WA @) J0LicH
UN|\/ERS|TAT Forschungszentrum CENTRE

Audio Deepfake Detection using
the Stationary Wavelet Transform

Master Thesis

Rheinische Friedrich-Wilhelms-Universitat Bonn
Computer Science

Author: Niclas Pillath

Supervisor: Dr. Moritz Wolter

Examiner: Prof. Dr. Estela Suarez
Dr. Moritz Wolter

June 2024

Preface

This thesis is about the detection of audio deepfakes using the stationary wavelet
transform. The relevance of deepfake detection in today’s digital landscape can-
not be overstated. I am very happy to be able to contribute to the improvement
of machine-based detection methods. Although this work did not result in a new
detector that enhances current capabilities, we have answered the question of
whether the stationary wavelet transform is suitable as an input for CNN-based
detectors.

I would like to thank my supervisor Dr. Moritz Wolter for introducing me to
wavelet transforms and for providing countless suggestions for my experiments.
I also want to thank Dr. Bartosz Kostrzewa for his tips on managing large
datasets in a HPC environment. Finally, I wish to sincerely thank Prof. Dr.
Estela Suarez for her valuable feedback and the opportunity to compute at JSC.
Having one of the world’s most powerful supercomputers available for a master’s
thesis is not something taken for granted. It was a truly great experience.

Contents

1 Introduction

2 Theoretical Background

2.1 Wavelet Transforms

2.1.1 Continuous Wavelet Transform
2.1.2 Discrete Wavelet Transform
2.1.3 Discrete Wavelet Packet Transform
2.1.4 Stationary Wavelet Transform

2.2 Convolutional Neural Networks

2.2.1 Convolutional Layer . .
2.2.2 Detector Layer
2.2.3 Pooling Layer
2.2.4 Residual Learning . . .

3 Experiments

3.1 Setup
3.1.1 Environment
3.1.2 Implementation
3.1.3 Configuration
3.2 Dataset
3.2.1 Preprocessing
3.3 Fingerprints

3.4 1-dimensional vs 2-dimensional CNNs
3.5 Transfer Learning with ResNet-50

3.6 Wide Residual CNNs
3.6.1 Evaluation

3.7 Comparison to DWPT models
4 Conclusion
References
Appendices
A Complete Evaluation Results

B No log-transform

28
29
29
30
30
30
31
33
36
38
42
44
47

53

54

58

59

71

Abstract

Recent advances in generative modelling have uncovered new avenues for cre-
ative expression, while also raising the potential of malicious misuse. Deepfakes
pose significant risks to personal privacy, information integrity and cybersecu-
rity. One possible countermeasure against deepfakes are robust detection models
based on deep learning. In the context of audio, convolutional architectures have
demonstrated good recognition rates. The raw audio data is usually transformed
into a suitable format for convolutional neural networks. Current state-of-the-
art models employ Fourier or wavelet transforms. This thesis investigates the
detection of audio fakes using deep convolutional networks that process station-
ary wavelet transform inputs. The results show functional detector models, but
also reveal limitations of the stationary wavelet transform.

List of Abbreviations

ANOVA Analysis of Variance

AST Audio Spectrogram Transformer
ASV Automatic Speaker Verification
CNN Convolutional Neural Networks
CPU Central Processing Unit

CWT Continuous Wavelet Transform
DFT Discrete Fourier Transform

DWPT Discrete Wavelet Packet Transform
DWT Discrete Wavelet Transform

GAN Generative Adversarial Network
GMM Gaussian Mixture Model

GPU Graphics Processing Unit

JSC Jilich Supercomputing Centre
DCNN Dilated Convolutional Neural Network
LCNN Light Convolutional Neural Network
MRA Multiresolution Analysis

ReLU Rectified Linear Unit

STFT Short-Time Fourier Transform

SWT Stationary Wavelet Transform

Wavelets!

haar Haar

db Daubechies
sym Symlet

coif Coiflet

1 Please refer to the manual of PyWavelets [24] for more information.

Chapter 1

Introduction

Recent advances in deep learning have marked the beginning of a new era in syn-
thetic media creation. This has uncovered new avenues for creative expression,
while also raising the potential for malicious misuse. As the quality and acces-
sibility of these technologies continue to improve, it is becoming increasingly
evident that they will have a profound impact on society.

The introduction of generative adversarial networks (GANs) by Goodfellow et
al. in 2014 was the start of this new era. The researchers proposed a novel train-
ing framework in which a generative model competes with an adversary, called
the discriminative model. The generative model learns to produce samples that
are similar to those in the dataset, while the discriminative model learns to
distinguish these generated samples from the original samples in the dataset.
Goodfellow et al. demonstrated competitive results on image datasets and re-
vealed the potential of this framework [11]. Since their introduction, GANs have
been continuously developed and improved, and they continue to play a key role
in today’s research [12]. They already reached a point where it is now possible
to produce very realistic images [18] and audio waveforms [19, 25, 3].

In addition to GANSs, however, there exist numerous other neural network ar-
chitectures and learning frameworks that are employed for generative modeling.
Popular approaches include variational autoencoders and fully-visible belief net-
works [12]. Recently, diffusion models have emerged as a promising alternative
to the previously mentioned approaches, pushing the state of the art in image
and video generation tasks [33].

Apart from their legitimate applications, it is evident that the advancement
of generative models presents a potential for malicious exploitation. Synthetic
audio, images, or videos that appear realistic but have been fabricated by a
deep neural network are commonly referred to as deepfakes. One form of deep-
fakes involves the imitation of individuals without their knowledge or consent
[44], which can be used for various criminal activities, such as spear phishing
or bypassing biometric authentication systems. In 2020, an audio deepfake of a
company director was used to authorize money transfers. The bank employee
recognized the company director’s voice and was thus successfully deceived [28].
Although such threats mainly affect individuals, it is plausible that larger au-
diences could also be targeted by deepfakes. And indeed, deepfakes are already
being used today to widely spread misinformation. This erodes the overall
trust in digital content. The relevance of deepfake detection in today’s digital
landscape cannot be overstated. Deepfakes pose significant risks to personal

privacy, information integrity and cybersecurity [44]. Therefore, it is crucial to
understand the extent of these threats and to find suitable countermeasures.

In order to raise public awareness and sensitize people to deepfakes, private ef-
forts, such as blogs and podcasts, as well as institutional projects have emerged.
It is worth mentioning the "Detect Fakes" research program!, launched at the
MIT Media Lab in 2019. In addition to the publications, the program provides
a website that tests visitors in their image deepfake detection capabilities. Hu-
man detection capabilities have been studied using speech [28] and video [13]
deepfakes. The results generally indicate limited detection capabilities. The
difficulty for humans to detect deepfakes motivates machine-based methods,
especially those based on machine learning. Challenges like ASVspoof [38] rep-
resent a key motivator in this regard.

Recently, the majority of the leading deepfake detection models employ deep
learning. The current state of the art mainly involves convolutional neural
networks. However, other architectures, such as variational autoencoders or
recurrent neural networks, are also used [44]. In general, the various approaches
can be distinguished based on the features employed for their prediction. These
include biometric features such as eye blinking or facial expressions, and media
features, such as inconsistencies and artifacts. In addition, features specific to a
generative model can also be used [44]. To illustrate, researchers discovered that
GAN-based models leave a fingerprint, that can be extracted from the samples
they generate [29]. This enables not only the detection of a deepfake, but also
its attribution to a specific GAN model [43].

In the context of this thesis, we will limit ourselves to audio deepfakes. We
investigate their detection using convolutional neural networks, which have al-
ready demonstrated good recognition rates in the existing literature. It is a
common practice to transform the raw audio data into a suitable format for
convolutional neural networks. One possible option is the transformation into a
time-frequency representation. Available methods, such as Fourier and wavelet
transformations, have already been investigated and showed promising results.
However, the stationary wavelet transform remains unexplored, which motivates
the topic of this thesis.

Chapter 2 establishes the theoretical foundations for the wavelet transforms and
convolutional neural networks. Then, in Chapter 3, a series of experiments will
examine different approaches to audio deepfake detection using convolutional
neural networks. The corresponding digital content and source code can be
found here?. This thesis places particular emphasis on the stationary wavelet
transform and its comparison to other methods. Finally, Chapter 4 presents
a summary of our findings and assesses the utility of the stationary wavelet
transform in the context of audio deepfake detection.

1 https://detectfakes.kellogg.northwestern.edu
2https://gitlab.jsc.fz-juelich.de/suarez1/niclas_master

Chapter 2

Theoretical Background

2.1 Wavelet Transforms

We will restrict our notation to the one-dimensional case, as we will only be
working with audio. However, it should be noted that the presented techniques
can be extended to any number of dimensions. Let us consider a possibly infinite
real-valued function z(-) of an ordered independent variable u. While it may
seem intuitive to consider u as time and view its origin as a continuous range of
values, in practice, u is usually from a discrete set of values. Then, signal z(-)
is sampled in evenly spaced intervals, known as sample rate.

The well-known Fourier transform,

A . 1 * —ifu
z(f) = E‘/_mx(u)e Fu du, (2.1)

is capable of transforming a continuous signal z(u) into a function Z(f) of fre-
quency f. The conversion from the time domain into the frequency domain
yields a representation of the frequency content of the original function [4, Chap-
ter 1.1]. Similarly, the discrete Fourier transform (DFT),

X(f) =Y wyeln, (2.2)

U=—0o0

transforms a discretized infinite signal {z, : v € Z} into a function X(f) of
frequency f [31, Chapter 2.2]. In this context it is important to mention the
Nyquist frequency, which is the highest frequency that can be represented by
a discretized signal. Given a sampling interval At, the Nyquist frequency is
defined as fur := 1/(2At) [31, Page 87].

The result of the standard Fourier transform does not contain any time related
information. Suppose we were interested in the frequency content locally in time
instead, which is commonly referred to as time-frequency localization. Then the
standard approach would be to use the windowed Fourier transform,

oo

Z(f,1):= / z(u)g(u — 1) du, (2.3)
— 00

often referred to as Short-Time Fourier Transform (STFT). The basic idea is

to use a windowing function g that is translated using 7 to extract slices of

x before taking its Fourier transform. In practice, the frequencies f and the

locations 7 are assigned discrete, evenly spaced values. There are many possible
choices for the windowing function, one popular choice is the Gaussian function
[4, Chapter 1.2].

The wavelet transform is another technique to yield a time-frequency description
of some signal x(u). It does, however, have a few important differences com-
pared to the windowed Fourier transform, which we will discuss later. First,
we will define wavelets, the indispensable component of any type of wavelet
transform. The term wavelet is a neologism that originated from the French
word "ondelette", which translates to "small wave". Formally, a wavelet is a
real-valued function v (-) satisfying the following two basic properties.

I) The integral of 1(-) is zero:

/jo Y(u)du=0 (2.4)

IT) The square of 1(-) integrates to unity:

/_OO P(u) du =1 (2.5)

The importance of the aforementioned properties becomes clear when consid-
ering their intuition. For some 0 < € < 1, there must be an interval [-T,T] of
finite length such that fTT¢(u)2 du > 1 — € holds, if (2.5) is satisfied. Hence,
for e approaching zero, ¥(u) can only deviate insignificantly from zero outside
the interval [—-T,7T]. At the same time, (2.5) also forces 1(u) to make some
excursions away from zero. However, (2.4) requires, that any excursion above
zero must be canceled out by an excursion below zero, because otherwise the
integral of ¥ (u) would not be zero. Combined with the observation, that the
nonzero activity of t(u) is restricted to only a relatively small portion of the
real axis, every ¥(u) satisfying properties (2.4) and (2.5) resembles a small
wave. This gives us a perfect recipe for constructing wavelets [31]. Figure 2.1
displays a selection of popular wavelets. The choice of a suitable wavelet is not
straightforward and is dependent on the intended application.

We will now formulate the basic concept of any wavelet transform before diving
deeper into different types of wavelet transforms. Let us begin by introducing
two new variables, scale A and translation . These two parameters will be used
to create copies of a given wavelet 1(u). Formally, this can be defined as

Pae(u) == 1/J<u ; t) . (2.6)

Intuitively, the scaling parameter A\ dilates the wavelet and the translation pa-
rameter ¢ will move the center of the wavelet. Note, that as A changes, the
wavelet will analyze different frequency ranges. Small values for A cover high

1 1
0.2 0.4 0.6 0.8 1.5 2 2.5 3
-1 -1
(a) Haar (haar) with L =2 (b) Daubechies (db2) with L = 4
1 1
1YY sl o5 6 7 2 1 6 8 10
1 -1
(c) Symlet (sym4) with L =8 (d) Coiflet (coif2) with L = 12

Figure 2.1: The ¢ (u) functions from a selection of popular wavelets. Their respective
filter lengths are denoted by parameter L.

frequencies and large values for A cover low frequencies of an input signal. Be-
cause every wavelet 1 (1) can be seen as a child from v (u), the original wavelet
¥ (u) is also referred to as the mother wavelet [4, Chapter 1.2].

The wavelet transform utilizes individual vy (u) as analyzing functions, sim-
ilar to the function g used in the windowed Fourier transform. However, g
solely translates a fixed-size window. In contrast, iy ; scales with A and thus
inevitably also changes the size of the analyzing window, because the nonzero
activity of ¢ (u) is limited. Consequently, wavelets are capable of naturally
forming windows of frequency-dependent size. Compared to g, where the size
of every window is the same, independent of the frequency that is being ana-
lyzed, wavelets are therefore able to better capture short-lived high frequency
phenomena [4, Chapter 1.2].

Now, analogous to (2.3), by taking the inner products of z(u) with the analyzing
functions ¥y . (u), that traverse the time and frequency domain of z(-), we yield a
time-frequency description of the input signal. At the same time, this raises the
question on how to choose the scaling parameter A and translation parameter
t. We will discuss the different approaches in the following subsections.

2.1.1 Continuous Wavelet Transform

The first, and perhaps also most intuitive approach, is to select A\ and t from
the continuum of real numbers R, except A = 0. For simplicity, we will restrict
A to positive values only. Formally, this results in the following family of child
wavelets F := {1/1>\,t | A € Ryg,t €]R}, where each child wavelet is defined as

o) = = 0(5. (2.7

The continuous wavelet transform (CWT) is then defined by

Wa (A, 1) ::/ z(w)y ¢ (u) du. (2.8)
It is important to note, that the continuous wavelet transform preserves all
information of z(-). Additionally, if (-) has finite energy and if ¢ (-) satisfies

the so-called admissibility condition, the input signal can be reconstructed given
its CWT [31, Chapter 1.2].

10

s
=3
decibel [dB]

frequency [KHz]
|
IS
S

A _70
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [sec]

Figure 2.2: Scalogram of a two-second slice of an utterance obtained from a CWT us-
ing 256 scales and the Shannon wavelet. The large red rectangle represents a magnified
view of the smaller red rectangle.

The transformation of a one-dimensional signal into a two-dimensional time-
frequency description inevitably results in a considerable amount of redundancy
in the output. Figure 2.2 serves to illustrate redundancies in the output of the
CWT. The time-frequency description of the CWT is well-suited for analysis
with the human eye. Generally, it can observed, that there are only small dif-
ferences of adjacent CWT coefficients. This sparks the idea of only considering
a subset of the W, (A, t) computed by the CWT [31, Page 121].

2.1.2 Discrete Wavelet Transform

As indicated, the discrete wavelet transform (DWT) can be thought of as a
subsampling of the W, (), t) values. Consequently, we want to restrict A and ¢
to discrete values only. For the scaling parameter, we naturally chose A = AF’,
with Ag # 1 and m € Z. For the translation parameter, we chose t = nty, with
to > 0 and n € Z. Then, we modify the representation of a child wavelet such

that . A
. U — ntgAy"

Note, that the choice of Ay and ty depend on the mother wavelet ¢ (u). The
natural choice of A\g = 2 and t; = 1 does not suit every wavelet [4].

However, the discrete wavelet transform can also be formulated independently
of its continuous counterpart. This formulation describes an iterative approach
to the computation of the DWT. For this, let us introduce filters. We define
a real-valued filter {h; : | = 0,...,L — 1} of length L € 2Ny with hg # 0
and hy_; # 0. Additionally, we define h; := 0 VI € L such that {h;} is an
infinite series with at most L nonzero values. If {h;} satisfies the following
three properties, it is called a wavelet filter.

I) The wavelet filter sums to zero:

> =0 (2.10)

> hp=1 (2.11)

III) The wavelet filter must be orthogonal to even shifts:

L—-1

Z hlhl+2n =0 Vne N#o (2.12)
=0

Note that properties (2.11) and (2.12) together are referred to as the orthonor-
mality property of wavelet filters [31, Chapter 4.2].

For the remainder of this section, let us redefine the input signal z(-) as vector
X of length N = 27. Moreover, for convenience, we define Nj = N/27 Vj € N.
In addition, let us quantify the notion of periodized filters for future reference.
Given an infinite filter {a; : t = ..., —1,0,1,...}, the values for the filter peri-
odized to length NV are defined by

a7 = Y ayynn,fort=0,...,N-1. (2.13)

n=—oo

Intuitively, the filter {a;} is divided into blocks of N coefficients, which are then
stacked and finally added to form the periodized filter [31, Chapter 2.6]. If we
use a periodized filter, we always specify its length.

We will now apply the wavelet filter on X by iterating over t = 0,...,N; — 1

and computing
L—1

Wi, = th X2t 41— imodN - (2.14)
1=0

Note, that in (2.14) we take every other value of X, which is commonly referred
to as downsampling by two, which is also denoted by the | 2 operator. Analo-
gously, the upsampling operator T 2 can be defined as a function, that inserts
zeros before every value of its input [31, Chapter 4.2].

The wavelet filter output is the sequence {W .}, called wavelet coefficients,
where j = 1,2,...,J denotes the decomposition step. The coefficients of one
decomposition step form a group, which is also referred to as j-th level co-
efficients. So far, we only defined the computation of the first level wavelet
coefficients {W1;}. In order to state the computation of the remaining ones up
to level J, we introduce a second filter, called scaling filter.

The scaling filter {g;} reverses {h;} and then changes the sign of the wavelet
filter values with even indices, formally defined as

gri= (1" hpq . (2.15)

Note the inverse relationship h; = (—1)'g;_1_;. Additionally, it is important
to note, that properties (2.11) and (2.12) are also satisfied by {g;}. Thus the
scaling filter also satisfies the orthonormality property [31, Chapter 4.3].

Similar to the computation of the first level wavelet coefficients, we can now
apply the scaling filter on X by iterating over t = 0,..., N; — 1 and computing

L-1

Vi = Zgz X2t 41— Iimod N - (2.16)
=0

The scaling filter output is the sequence {V .}, called scaling coefficients, with
again j = 1,2,...,J. Observe, that the output is downsampled in the same
way as in (2.14) [31, Chapter 4.2]. Before proceeding with the computation of
the remaining wavelet and scaling coefficients, let us examine some properties
of the wavelet filter and the scaling filter.

The representation {h;} is referred to as the impulse response sequence of the
wavelet filter. Alternatively, its representation in the frequency domain is given
by the frequency response function, denoted by H(f). Furthermore, let H(f) :=
|H(f)|? be the squared gain function of the wavelet filter. Analogously, we
denote G(f) and G(f) as the frequency response function and the squared gain
function for the scaling filter {g;}, respectively [31, Chapter 2.3]. The values of

—8— wavelet filter = wavelet filter

scaling filter scaling filter

0.8

. 0.6

0.0 ——
<o
0.44

|
&
L

normalized magnitude
o
)
power

0.2 1

~1.0

0.0 T T T
— — _ -, P 1 1 3
3 6 4 2 0 2 4 6 0 in in 3 n
normalized frequency [radians]

time [samples|

(a) Impulse responses (b) Squared gain of frequency responses

Figure 2.3: Analysis of the filters for the Symlet (sym4, L = 8) wavelet. The plot
on the left shows the impulse responses of the wavelet and scaling filters. The plot on
the right shows the squared gain of their frequency responses. Both plots show the
filters for the first decomposition step, that is for level j = 1.

H(f) and G(f) can be computed using an algorithm for the DFT. To illustrate,
the values of H(f) are given by

00 L-1
H(f) = Y he =3 et (2.17)
=0

l=—00

according to equation (2.2). Note, that the equality in equation (2.17) holds
because, by definition, the non-zero activity of {h;} is limited to indices 0 <1 <
L — 1 [31, Chapter 4.2].

Figure 2.3 provides an example of the impulse and frequency responses of a
wavelet and scaling filter for level j = 1. A closer examination of Figure 2.3a
shows the inverse relationship between the wavelet and scaling filter. Of partic-
ular interest, however, is Figure 2.3b, which presents the squared gain functions
of the filters’ frequency responses. Here we can observe, that the wavelet filter
can be regarded as an approximation to a high-pass filter, which preserves high
frequency components while attenuating low frequency components. Conversely,
we can also observe, that the scaling filter can be regarded as an approximation
to a low-pass filter, which preserves low frequency components while attenuating
high frequency components.

Generally, the pass-band of a filter describes the preserved frequencies. In this
thesis we normalize frequencies to the interval [—m,n]. Due to the periodic
nature of the DFT (i.e., H(—f) = H(f)), it is sufficient to analyze the interval
[0, 71]. Referring back to Figure 2.3b, we can observe an approximation to the
pass-band 17 < |f| < 7 and 0 < |f| < i7 for the wavelet filter and the
scaling filter, respectively. It is important to note, that different wavelets lead
to different approximations with ultimately different frequency responses. In
general, it can be observed that the approximation of the aforementioned pass-
bands improve with increasing filter lengths. This is the case, for example, with

10

G(:)| — Va2
.] / N 12
v W
/ \

X

AN

Figure 2.4: Flow diagram illustrating the analysis of X into the wavelet coeffi-
cients Wi, Wy, ..., W and the scaling coefficients Vi, Vo, ..., V; using the dis-
crete wavelet transform. The filtering operation of the wavelet and scaling filters is
expressed as a sampling of their frequency response functions.

12
)| — W,

2=

wavelets from the Daubechies family [31, Page 73].

The calculation of the remaining wavelet and scaling coefficients can be de-
scribed as a cascade of filtering and downsampling operations, as illustrated in
Figure 2.4. Input X is transformed into N/2 first level wavelet coefficients Wy
using the wavelet filter, and into N/2 first level scaling coefficients V1 using
the scaling filter. For j = 2,...,J, the j-th level transforms vector V;_; of
length IN;_; into the vectors W, and Vj, each of length N;, by filtering all
elements of V;_; separately with the wavelet filter and scaling filter and then
downsampling by two. Formally, j-th level wavelet and scaling coefficients are
defined for t =0,...,N; — 1 by

L—1

W= hVi 1 241-imodN, , (2.18)
1=0
L—1

Vi = Z 91 Vji—1,2t+1—Imod N, - (2.19)
1=0

This aforementioned scheme is repeated for every subsequent level j in order to
compute the wavelet and scaling coefficients up to level j = J [31, Chapter 4.6].

In the flow diagrams, we express the circular filtering operations as a sampling
of their frequency response functions. For all K =0,..., L —1 and for each level
j=1,...,J, we sample the frequency response functions H(-) and G(-) at the

locations Nf—l [31, Page 33].

Figure 2.5 presents the squared gain functions of frequency responses, continuing
the example provided in Figure 2.3. For the wavelet filter and the scaling filter,
frequency responses of the first three decomposition steps were computed using
the DFT. We can identify the pass-bands of the filters, namely 37 < |f| < 7 for

the first level wavelet filter, 17w < |f| < I for the second level wavelet filter,

11

level 1

= wavelet filter

= scaling filter

level 2

= wavelet filter

== scaling filter

0.0 T T T
level 3

= wavelet filter

== scaling filter

0.0 T T T
1 n
3n an

o
NS
3

normalized frequency [radians]

Figure 2.5: Squared gain functions of the frequency responses for the wavelet and
scaling filters of the Symlet (sym4, L = 8) wavelet for the first three decomposition
steps. The plot on the top represents level j = 1, the plot in the middle represents
level 7 = 2, and the plot in the bottom represents level j = 3.

im < |f| < im for the third level wavelet filter, and 0 < |f| < g for the third
level scaling filter.

Every level of the DWT can also be associated with a scale that we introduced
as part of the CWT. The scale of the output from the wavelet filter at level
j=1,...,J is defined by 7; := 2771, In practice, it is common to relate a scale
7; to its physical scale 7;At by taking into account the interval At between
observations [31, Page 59]. In addition, let \; := 27 define the scale of the
output from the scaling filter at level j = 1,...,J. It can be argued that the
j-th level wavelet coefficients are associated with changes in weighted averages
over scale 7; and that the j-th level scaling coefficients are associated with
weighted averages on scale A; [31, Chapter 4.1]. This property is of interest
from a mathematical and statistical perspective, but its intricacies will not be
further discussed.

Considering the coefficients as vectors suggests that the calculation can also be
expressed in matrix notation. For j = 1,...,J, let us define two matrices B;
and A;, each of shape N; x N;_;. The rows of B; contain circularly shifted
versions of the wavelet filter {h;} periodized to length N;_;. Similarly, the

12

rows of A; contain circularly shifted versions of the scaling filter {g;} periodized
to length N;_;. Consequently, following the previously described scheme, we
can compute the j-th level wavelet coefficients using W; = B;V;_; and the
Jj-th level scaling coefficients using V; = A;V;_;. Expanding these terms with
Vy := X as follows

W, =B;V,_;

= BjA; 1V

= BjA; 1 AoV,

= BiA; 1Ay s. . ALV,
V= AV,

= A AV

=AjA;j1A; 5V, 3

= Aj.Aj_lAj_Q LAV

leads to o -~ _ L
W1 Bl Wl
Wo 82-/41 W
Wi| X=|BjAdj—1...A4 | X=|W;| =W. (2.20)
Wy ByAj_1... A4 W,
VJ _.AJAJ71...A1_ _VJ_

Here, we introduce the matrices,

Wj = Bj.Aj_l e Al 5
Viyi=ArA;-1.. A,

mainly for the sake of better readability [31].

It is important to mention, that the discrete wavelet transform is an orthonormal
transform. We already stated the orthonormal property of the wavelet filter
{h:} and the scaling filter {g;}. Thereby, the construction of the matrices B;
and A; implies that their respective rows are orthonormal. The orthonormality
property can be stated using inner products

1, ifk =k

) (2.21)
0, otherwise

<BkoaBk’o> = {

Here, By, denotes the k-th row vector of B. However, the orthonormality prop-
erty has to hold also for the column vectors Bej of B. The orthonormality can
be shown for both matrices B; and A;. Generally, an input can easily be recon-
structed from its orthonormal transform. Hence, the input and its transform
can be considered to be two representations of the same mathematical entity
[31, Chapter 3].

13

The fact, that the DWT is an orthonormal transform, has remarkable math-
ematical implications, which enable a wide range of applications. Besides the
important property that any input X can be reconstructed given the complete
coefficient matrix W, the DWT also preserves the energy its input, because
every orthonormal transform preserves the energy of the input. In addition, its
coeflicients enable the energy decomposition, formally

J
X112 =D W12+ Va2, (2.22)
j=1

which partitions the energy of X into segments associated with different scales
and times [31]. The energy decomposition is very similar to the statistical
technique called analysis of variance (ANOVA) [31, Page 19].

Furthermore, the wavelet and scaling coefficients of the DWT can be used in
the multiresolution analysis (MRA). We define vectors D; := W]TWj and §; :=
VjTVj for every level j = 1,...,J of the DWT. Input X can be expressed as

J
X=) D;+S,. (2.23)

j=1

We know that W; = W;X represents the portion of the analysis W = WX
attributable to scale 7;. Conversely, W]T W represents the portion of the syn-
thesis (reconstruction) X = WTW attributable to scale 7;. Intuitively, the
values in D; are associated with changes in X at scale 7; and the values in S;
are associated with the averages at scale A;. That is why the vectors D; and S;

are also referred to as j-th level wavelet detail and wavelet smooth, respectively
[31, Chapter 4.1].

So far, we assumed a sample size N = 27 and studied the calculation of the
DWT coefficients W up to level 5 = J. However, it is also possible to stop
the decomposition after Jy < J steps. This practice is commonly referred to
as partial DWT. The result of a Jy-level partial DWT is closely related to the
coeflicients of W. Precisely, all W; for 1 < j < Jy are subvectors of W, while
the scaling coefficients V j, simply replace the last N/27 coefficients of W .
In practice, the partial DWT offers the flexibility to not further explore large
scales [31, Chapter 4.7].

14

2.1.3 Discrete Wavelet Packet Transform

The previous section presented the DWT, which decomposes an input signal
into wavelet and scaling coefficients. However, the wavelet coefficients W ; for
some level j are not further analyzed by the DWT, as illustrated by the fil-
tering scheme in Figure 2.4. Thus, the analysis of high frequency components
of a signal stops once it has been high-passed using the wavelet filter. This
section presents the discrete wavelet packet transform (DWPT), which can be
considered as an extension of the DWT.

The discrete wavelet packet transform recursively filters its coefficients of the
previous level. For every level j =0,...,J, let W, denote the DWPT coeffi-
cient vector of level j indexed by n =0, ...,2/~! —1. Furthermore, let W,_1nt
denote the t-th element of W ,. In order to recursively compute the W,
given the previous coefficients, we require a formula for selecting the correct
filter given some level j and some index n. Formally, we define new filter values

) = g1, %fn%seven and b, = hi, %fn?seven. (2.24)
’ hy, if n is odd ' g, if nis odd

Now, the j-th level DWPT coefficients at index n are defined by iterating over
t=0,...,N; —1 and computing

L—1

Wont = E W31, n,2t41— Imod Nj_; »
=0
L—1

Wiiont1t = E b W1 n,2t+1— lmod N;_; -
=0

(2.25)

Likewise, the computation of the DWPT coefficients can also be expressed using
the previously defined matrices B; and A;:

A;W;_q,, ifniseven

W = o
ijj—l,nv if n is odd
(2.26)

Wiont1,e:=
» ’ -Ajo—l,n7 if n is odd

{Bjo_Ln, if n is even
In words, if n in W;_ ,, is even, we use the scaling filter to obtain W 2,, and the
wavelet filter to obtain W 2, +1. And vice versa, if n in W;_; ,, is odd, we use
the wavelet filter to obtain W »,, and the scaling filter to obtain W; 2,41. We
can illustrate this pattern in a wavelet packet tree, shown in Figure 2.6. Each
level j of the DWPT decomposes the frequency spectrum into 2/ individual
intervals of equal size. Moreover, each DWPT coefficient can be assigned to
a specific band of frequencies and a particular interval of time, similar to the
time-frequency localization in the STFT [31, Chapter 6.1].

15

WU,O =X

12 12

Wi W31 W2 Ws3 Wi, W5 Wi W;s 7

Figure 2.6: Flow diagram illustrating the analysis of X using the wavelet packet
transform up to level j = 3. The ordering of the coefficient vectors at each level j
represent the so-called frequency ordering, where index n = 0,...,27 — 1 reflects the
ordering of the decomposed frequency bands.

While Figure 2.6 shows an complete wavelet packet transform up to level j = 3,
it is also possible compute a only subset of coefficients. For instance, comput-
ing the coeflicient vectors W1 1, Wa 1, W31, and W3 would be equivalent
to computing a 3-level DWT. On the other hand, if we were particularly in-
terested in analyzing the upper frequencies of a signal, for example, we could
only compute coefficient vectors Wi 9, Wa3, W34, and W3 5. It is conve-
nient to identify nodes in the wavelet packet tree as tuples from the family
N:={Gn):5=1,....Jo;n=0,...,27 — 1} with Jy < J.

The decomposition of any W;_1 ,, into W; o, and W 2,11 is an orthonormal
transform. This can be shown, for instance in equation (2.26), where B; and A;,
by definition, both satisfy the orthonormality property. In order to make a more
general statement about orthonormal transforms in the DWPT, we introduce
disjoint dyadic decompositions. If for each node (4, n) in the wavelet packet tree,
we either decompose it into two child nodes (j+1, 2n) and (j+1, 2n+1) or we
do not further decompose it, then the result is a disjoint dyadic decomposition.
Ultimately, it can be shown, that any disjoint dyadic decomposition extracted
from a wavelet packet tree yields an orthonormal transform [31, Chapter 6.1].

16

2.1.4 Stationary Wavelet Transform

The stationary wavelet transform (SWT) presents an interesting alternative
to the previously discussed transforms. From the previous sections we know
that the wavelet coefficients can be regarded as changes in weighted averages
associated to a specific scale and that the scaling coefficients can be regarded as
weighted averages associated to a specific scale. It is important to recognize, that
the intervals over which these averages are computed are fixed a priori by the
start point and the length of the input signal. Therefore, the averages may not
align well with interesting features of the input. Furthermore, small translations
of the input signal can yield quite different wavelet coefficients and thereby also
different averages. These considerations serve as the primary motivation for the
SWT [31, Chapter 5.1].

The SWT attempts to address the issues associated with the a priori fixed filter
positions. Intuitively, this can be achieved by avoiding the downsampling of the
filter output and thus calculating coefficients for all possible filter positions. This
motivates the key difference between the SWT and the DWT: The coefficients
are not downscaled. Therefore, given some input length IV, every level of the
SWT yields coefficient vectors of length N [31, Chapter 5.3]. Nevertheless, this
approach also entails a greater computational effort, as the coefficients for all
possible filter positions must be computed [31, Chapter 5.0].

In order to avoid confusion with preceding definitions, we attach a tilde sign to
definitions related to the SWT. Let the j-th level wavelet and scaling coefficients
be denoted by vectors Wj and Vj, respectively. Similar to the previous sections,
we denote ijt and Vj,t as the t-th element of Wj and Vj, respectively. We
will define the computation of V~Vj and Vj by applying the corresponding filters
on input X. This is different from the previous sections, where we used the
coefficient vectors of level j — 1.

For this, we first redefine the wavelet and scaling filters, such that they relate
Wj and Vj directly to X. The wavelet filter for level j, denoted by {h;,}, is
constructed by inserting 2/~ — 1 zeros between the filter values of {h;}. The
scaling filter for level j, denoted by {g;,}, is constructed analogously [31, Page
591]. Note, that for some level j, both filters have width L; := (2 —1)(L—1)+1.
Let {h;;} be defined such that h;; := h;;/27/% and let {g;;} be defined such
that g;; := gj;/27/%. Then the j-th level coefficients are given by iterating over
t=20,...,N —1 and computing

Lj—1
Wi = Z hjiXt—imod N

=0

Lj—1 (2.27)
Vj»t = Z gj,lXt—lInodN .

=0

The outputs are not downscaled, which yields N wavelet and scaling coeffi-
cients for every level j [31, Chapter 5.4]. This results in a highly redundant
representation [31, Chapter 5.0].

17

Unlike the DWT, the SWT is not an orthonormal transform. Nevertheless, it is
still possible to employ the SWT coefficients in a multiresolution analysis and
a energy decomposition. It can be shown, that the SWT filters have zero phase
properties, which enable the alignment of events in X with events in the detail
and smooth vectors of the corresponding MRA. In addition, circularly shifting
the input also circularly shifts the values of the detail and smooth vectors [31,
Chapter 5.12]. This is why the SWT is also referred to as a shift-invariant or
time-invariant DWT [31, Chapter 5.0]. Another useful property of the SWT, is
that the coefficients are defined for any input size N [31, Chapter 5.4].

Typically, a decomposition using the SWT follows a filtering scheme, similar to
the one of the DWT. However, it is also possible to extend the idea of the SWT
to the DWPT. This enables the DWPT to inherit the aforementioned properties
[31, Chapter 6.6].

18

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs), famously introduced by LeCun et al. in
1989 [23], specialize neural networks to work exceptionally well with hierarchical
grid-structured data, such as images. CNNs extend the concept of neural feed-
forward networks, inherit their layered structure and are also trained with the
well-known backpropagation algorithm. The distinguishing feature of CNNs
is their ability to efficiently capture spatial hierarchies and patterns through
convolutional and pooling layers [23, 10].

CNNs were among the first deep neural networks to perform well and were also
some of the first neural networks to be deployed in commercial applications.
Since their introduction, CNNs continued to evolve, various different architec-
tures have been presented, and significant improvements regarding scalability
and representational capacity have been achieved [10, Chapter 9.11].

In 2012, Krizhevsky et al. won the popular ImageNet challenge using a CNN-
based architecture, marking a significant breakthrough for CNNs. Their pro-
posed model demonstrated best performance on both image classification and
single-object localization tasks [20, 34].

As with feedforward networks, CNNs are typically described by dividing them
into layers, with each layer successively transforming its input units into output
units. A convolutional layer performs a special form of transformation that
serves as the foundation of CNNs. Figure 2.7 depicts the key components of
CNNs, which will be explained in the following subsections.

Input features

Convolutional layer

)

Detector layer

)

Pooling layer

)

Ouput features

Figure 2.7: Components of a convolutional neural network.

19

2.2.1 Convolutional Layer

Convolution, in general terms, describes an operation using functions z(-) and
w(+) to produce a third function, denoted by (z*w)(-). Over a continuous space
it is defined by (zxw)(t) := [z(a)w(t—a)da. Similarly, the discrete convolution
is defined by (z*w)(t) := >_ x(a)w(t —a). In the context of CNNs, however, we
use a slightly different notion, as their inputs are typically of two-dimensional
and discrete nature. Let I € R? be a two-dimensional input of shape I x J €
N x N, such as an image and let K € R? be a two-dimensional parameterized
filter of shape M x N € N x N. Note, that I and K are commonly called input
tensor and kernel, respectively. Let a tuple (z, y) € {(z, y) : «,y € N} denote
an arbitrary position. We can consider I and K as functions where we use
position (z, y) to query the value of their finite two-dimensional set of values.
We assume zero values for all undefined positions (z, y). For positions (i, j),
the convolution of I with K is defined as

TxK)(i,5) = > Y I(i —m,j —n)K(m,n) . (2.28)

In practice, many neural network libraries implement the convolution of I with
K by computing

TxK)(i,5) =YY I(i+m,j+n)K(m,n), (2.29)

which is a related function known as cross-correlation [10, Chapter 9.1].

Figure 2.8: Illustration of a two-dimensional convolution with no padding. The
convolution of an input tensor (blue) of shape 4 x 4 with a kernel (dark blue) of shape
3 x 3 results in an output tensor (cyan) of shape 2 x 2. This illustration is taken from
"A guide to convolution arithmetic for deep learning" [5].

Figure 2.8 depicts a two-dimensional convolution. Here, the convolution ef-
fectively reduces the spatial sizes of the output. More precisely, a kernel of
shape M x N, that is only allowed to visit positions (4,j) such that position
(i—m, j—n) is defined on I, reduces the output to size I —M+1x J—N+1. This

20

kind of convolution is sometimes called valid convolution. The consequence of
valid convolutions in multiple convolutional layers is that the output size is suc-
cessively reduced, which limits the number of convolutional layers that can be
stacked in the network. Although the choice of small kernel sizes mitigates this
effect, overall the expressive power of the network is significantly constrained
[10, Chapter 9.5]. Moreover, it can be observed that that positions near the
border of the input are visited less often than positions near the center.

The aforementioned side effects can be alleviated by using padding, which is
defined as adding zeros around the input. This effectively lets us control the size
of the output without modifying the shape of the kernel. One common padding
technique involves adding exactly as many zeros around the input tensor as are
needed to produce an output of equal size. This, however, still may under-
represent features near the border, because elements near the border have less
influence on the kernel compared to elements near the center of the input.
Another padding technique involves adding enough zeros to ensure that every
element in the input is visited equally many times. This enlarges the output
size to I + M —1 x J+ N — 1 [10, Chapter 9.5]. Both padding techniques are
illustrated in Figure 2.9.

(a) same padding (b) full padding

Figure 2.9: Illustration of convolutions using two different padding techniques. The
transparent squares with dashed borders indicate the padding values, that have been
added to the input tensor (blue). The illustrations are taken from "A guide to convo-
lution arithmetic for deep learning" [5].

A convolutional layer offers significant advantages compared to traditional fully-
connected layers, in particular sparse interactions, parameter sharing and equiv-
ariant representations. According to equation (2.28), it is clear that multiple
neighboring input units affect the output of the convolution at position (i, 7).
These neighboring input units are also referred to as the receptive field of the
output units. Conversely, multiple neighboring output units are affected by the
same input units. This property is known as sparse interactions and occurs when

21

the kernel size is smaller than the input size. In contrast, in a fully-connected
layer, an output units is affected by all input units. Sparse interactions in a
convolutional layer result in fewer parameters, which in turn requires fewer op-
erations for computing the output and reduces memory requirements. Besides
that, it is also worth mentioning, that even though direct connections in a single
convolutional layer are very sparse, units in deeper convolutional layers can be
indirectly connected with a large portion of the input. This enables the network
to efficiently describe complex interactions [10, Chapter 9.2].

Every kernel value can be regarded as an individual parameter. When comput-
ing the output of a convolutional layer, each parameter is used at every position
of the input, except perhaps positions near the border depending on the padding
used. This concept is commonly referred to as parameter sharing. After the
calculation of the output, the parameters of the kernel will be adjusted. Pa-
rameter sharing in a convolutional layer results in an additional property, called
equivariance to translation. Intuitively, this property states that a translated
input to a convolutional layer yields a equally translated output. However, con-
volution is not naturally equivariant to other transformations, such as changes
in scale or rotation [10, Chapter 9.2].

As part of the research in CNNs, additional variants of convolutional layers
have been developed. The strided convolution skips positions of the input during
convolution, instead of computing the convolution over all positions of the input.
The result can be seen as downsampling the output of the full convolution. Note,
that it is also possible to define different strides for the different dimensions of
the input [10, Chapter 9.5].

The dilated convolution increases the receptive field of output units without
changing the kernel size and thus without increasing the number of parameters
in the kernel. In practice, this is achieved by modifying the convolution operator
to apply the kernel to a different range of the input. Intuitively, this can be
thought of as inserting spaces between the kernel values. Note, that similar to
the strided convolution, it is also possible to define different spacings for the
different dimensions of the kernel. An increase in the kernel size in order to
increase the receptive field results in a loss of resolution. In contrast, dilated
convolutions do not result in a loss of resolution. Moreover, dilated convolutions
exponentially increase the receptive field of the network while the number of
parameters grows linearly [42, 5]. Both variations are illustrated in Figure 2.10.

Furthermore, the tiled convolution first divided the input into smaller subsec-
tions, called tiles, before performing a convolution operation over the tiles using
a set of independent kernels. This offers a compromise between a fully-connected
layer and a convolutional layer [10, Chapter 9.5].

We will conclude this subsection by briefly discussing an important practical

aspect of convolutional layers, namely their use of multichannel convolutions. It
is common to regard an image as a 3-dimensional input tensor, where the first

22

(a) strided convolution (b) dilated convolution

Figure 2.10: Illustration of strided and dilated convolutions. The left column demon-
strates a strided convolution where the kernel of shape 3 x 3 skips one valid position
of the 5 x 5 input. The right column demonstrates a dilated convolution, where the
receptive field of an output unit is increased by 2 in both dimensions. All illustrations
are taken from "A guide to convolution arithmetic for deep learning" [5].

dimension defines the color channel and the remaining two dimensions define
the width and height of the image. A convolutional layer then transforms the
input with C; channels into an output with C, channels by using a 4-dimensional
kernel. The first two dimensions of such an kernel represent the strength of the
connection between the respective input and output channels. The remaining
two dimensions represent the row and column offset between the input and
output units, as defined in equation (2.28) [10, Chapter 9.5].

2.2.2 Detector Layer

The output units returned from a convolutional layer are linear combinations of
the input units and the parametrized kernel, which can be observed in equation
(2.28). This is why the output units of the convolutional layers are also referred
to as linear activations. In order to introduce nonlinearity between layers, the
output units are passed into a nonlinear activation function. This extends a
linear model to represent nonlinear functions [10, Chapter 6.0] and causes the
loss function to become nonconvex [10, Chapter 6.2].

It is worthwhile to have a closer look at the various activation functions that are
commonly used in practice. Figure 2.11 depicts the rectified linear unit (ReLU),
the LeakyReLU, the hyperbolic tangent, and the Sigmoid function.

23

37 —ReLU
LeakyReLU
—— Hyperbolic Tangent
2) .
—— Sigmoid
ONSE
=~
O -
14
T T T T
-2 0 2 4

Figure 2.11: Popular activation functions. The ReLU and its variations are com-
monly used in detector layers of CNNs. The hyperbolic tangent and Sigmoid functions
are primarily used in the output layers.

2.2.3 Pooling Layer

The final central component of CNNs is the pooling layer, which uses a pooling
function to further modify the output units. More precisely, the pooling function
replaces the features at a certain location with a summary statistic of nearby
features. This process further reduces the number of output units resulting in a
more compact representation. Furthermore, it is easy to see that this helps to
make the output units almost invariant to small translations of the input. This
is especially useful if we are more concerned with the presence of certain features
rather than their specific locations. Additionally, pooling layers are commonly
used for handling inputs of varying size [10, Chapter 9.3].

There are numerous types of pooling functions and it is also straightforward
to create new ones. Commonly used pooling functions include average pooling
and max pooling. Some theoretical work provides guidance as to which types
of pooling should be used in different scenarios [10, Chapter 9.3].

2.2.4 Residual Learning

Empirical evidence indicates that an increase in learnable parameters of a net-
work is not sufficient to enhance performance. Rather, the number of layers in a
network must also be increased. A deep neural network is capable of learning a
greater variety of functions. Assuming a function can be described using many
simpler functions, the intuition behind a deep network is that more layers help
to represent parts of the complex function. In addition, the existing literature
suggests that greater depth of neural networks appears to result in better gen-
eralization [10, Chapter 6.4.1]. However, the introduction of additional layers
to a neural network has also been observed to present drawbacks, which will
now be discussed in detail.

24

Deep convolutional networks have enabled important advances in image classifi-
cation, but have proven to be more difficult to train. This is attributable to the
fact that simply stacking more additional layers introduces several problems.
While the use of normalized initialization and normalization layers was effective
in addressing the problem of vanishing and exploding gradients, the issue of
degradation remained unresolved. Residual learning addresses the degradation
problem. Its concept was first introduced by He et al. in 2016 in their well-
known research paper "Deep Residual Learning for Image Recognition" [14].

As the depth of a network increases, its accuracy gets saturated. This is to be
expected, given that a more complex model is more likely to be able to learn all
the intricacies of the training data. However, at a certain point during training,
the accuracy of the deep network degrades rapidly, which is commonly known
as the degradation problem. It is important to note, that this is not caused by
overfitting, because the training accuracy also degrades. The residual learning
approach successfully addresses the degradation problem and proves to simplify
the training of deep neural networks [14].

Let H(z) be the desired underlying mapping to be fitted by a few stacked
layers, with denoting the inputs to the first of these layers. Instead of letting
these layers to directly approximate H(z), the residual learning approach lets
these layers to approximate a residual function F'(z) := H(z) — z. Thus, the
approximated output function becomes F'(x)+z. It is possible to asymptotically
approximate both representations H(z) and F(z) + «, provided that multiple
non-linear layers can approximate arbitrarily complex functions. However, the
ease of learning is very different, as shown by the researchers [14].

He et al. proposed two building blocks for residual learning, namely the basic
and the bottleneck block. Nevertheless, they also emphasized that the form of
the residual function is flexible, but should at least comprise two or more layers.
The basic block consists of two convolutional layers, both with kernel size k. In
contrast, the bottleneck block comprises three convolutional layers, where the
layers with kernel size 1 are responsible for reducing and restoring dimensions,
leaving the layer with kernel size k as the bottleneck with smaller input and out-
put dimensions. Every convolutional layers is followed by a batch normalization
layer. Additionally, detector layers are placed between a batch normalization
layer and a convolutional layer [14]. An illustration of both building blocks can
be found in Figure 2.12.

25

To simplify the notation we define both building blocks as two separate func-

tions:
basic(i, o, €, k, s, d), and

bottleneck(i, o, b, €, k, s, d), with

¢ = input channels,

o = output channels,

(2.30)

e = expansion,

b = bottleneck,
k = kernel size,
s = stride,

d = dilation .

The standard implementation involves zero-padding both dimensions such that
the output size matches exactly the input size. Furthermore, the shortcut con-
nection involves an identity mapping, if applicable. Otherwise, a convolutional
layer with a kernel size of 1 is typically used. It is crucial to acknowledge that
the utilization of identity mappings offers great advantages in practice. Iden-
tity mappings do not introduce additional parameters or an increase in com-
putational complexity [14]. This should be taken into account when designing
residual networks.

He et al. developed a popular family of deep convolutional networks, known as
ResNet, which leverage the benefits of residual learning. More precisely, they
developed five ResNet variants with different depths ranging from 18 up to 152
convolutional layers. All networks can be divided into five groups of convolu-
tional layers and one final fully connected layer. The first group comprises a
single convolutional layer and the remaining groups are composed of varying
numbers of basic or bottleneck blocks [14].

The ResNet models were originally designed to classify images and were trained
on the ImageNet dataset to classify images into 1000 different categories. In
2015, the researchers won the ImageNet challenge using an ensemble of their
ResNet models. Their submission report a 3.57% top-5 error rate for the clas-
sification task on the test set [14].

26

basic(i, o, €, k, s, d) bottleneck(i, o, b, e, k, s, d)

k—
k— 8

conv2d (i, 0) conv2d (i, [7])
K=k S=s, D=d K=1,8=1,D=1
| |
| bn2d | | bn2d |
L = l =
| activation | [| = | activation | [| =
| = | =
conv2d (o, 0-€) conv2d ([2], [%])
K=k S=1,D=1 K=k S=s D=d

! !

bn2d | | bn2d |
l I
EB | activlation |
l
F(z)+2 conv2d ([7], 0-¢)

K=1,8S=1,D=1

2d |

|
bn
l
D
|
F(x)+x

Figure 2.12: Illustration of the residual building blocks utilized in the ResNet ar-
chitectures [14]. The black square denotes the shortcut connection, ideally an identity
mapping. Furthermore, conv2d denotes a two-dimensional convolutional layer, bn2
denotes a two-dimensional batch normalization layer, and activation denotes an arbi-
trary detector layer.

27

Chapter 3

Experiments

We will now proceed to the practical part, namely the design and analysis of
neural network based detectors for audio deepfakes. Let us begin by formally
stating the problem. The objective is to determine whether an audio recording
of spoken language is authentic or not. An authentic recording is defined as one
that reflects an utterance of a real person. If a recording is not authentic, then
the utterance was synthesized by some generator. We have already briefly men-
tioned generators at the beginning of this thesis, but in order to better address
the given problem, generators need to be discussed in greater detail. In recent
years, research into text-to-speech synthesis has made impressive progress. This
has led to the emergence of numerous text-to-speech generators.

For generative tasks such as waveform synthesis, Generative Adversarial Net-
works (GANs) are a popular choice of network architecture. Due to depen-
dencies at different time scales in audio data and its high temporal resolution,
modelling raw audio waveforms is considered a challenging task. Therefore,
lower resolution intermediate representations are often used. Thus, synthesis
typically involves two steps using two distinct models. The first model creates
an intermediate representation based on a given some text input, and the sec-
ond model transforms the intermediate representation back into audio. This
second model is also known as the vocoder. In the context of speech synthesis,
commonly used intermediate representations include aligned linguistic features
and mel-spectrograms [21].

One of the early models to produce high-quality audio was the MelGAN [21].
Both models in the GAN framework, namely the generator and the discriminator
use a non-autoregressive convolutional architecture. This kind of architecture
reduces the number of learnable parameters and ultimately enables very fast
inference, compared to autoregressive models [21]. In a subsequent research
project, MelGAN’s capabilities were further enhanced [41]. Tt is also important
to mention research in autoregressive models such as WaveRNN [17]. Besides
that, flow-based models, such as WaveGlow [32] have also been proposed. The
most recent generation of GAN-based models, such as BigVGAN [25] and Av-
ocodo [3] reflect the current state of the art in generative modeling of audio
waveforms.

The availability of many new generators has also led to a surge of interest in
their detection. One important driving force is the ASVspoof challenge [38, 26],
of which there have already been four editions. Automatic speaker verification
(ASV) is used in biometric systems to verify an individual’s identity based on
their voice. Such systems are vulnerable to spoofing attacks, where a malicious

28

actor deceives the system into falsely recognizing them as an authorized user.
The ASVspoof challenge sets the task of developing countermeasures to spoofing
attacks using synthetic, converted, and replayed speech [38, 26]. It is evident
that the mentioned generator networks have the requisite capabilities for such
spoofing attacks.

The contestants have thus far proposed many promising detector models, which
do not only differ in terms of their network architecture, but also use a variety of
different feature extraction methods. Generally, feature extraction in the con-
text of audio data involves transforming the raw audio signals into meaningful
characteristics [22]. For example, the STFT and the wavelet transforms, which
we discussed in Section 2.1, are also methods for feature extraction. The latest
editions of ASVspoof provided three baseline models. First, RawNet2 [16], a
combination convolutional layers, residual blocks and gated recurrent units. As
the name suggests, RawNet2 processes raw audio data. Second, two variants of a
Gaussian mixture model (GMM) with different feature extraction approaches.
We focus on the model that employs the linear frequency cepstral coefficient
(LFCC) [35]. And finally, the Light CNN (LCNN), a five layer convolutional
neural network that is characterized by the use of so-called Max-Feature-Maps
as detector layers. The LCNN processes Fourier transform coefficients [22]. We
will also use these models as baseline to our evaluation.

The primary objective of this thesis is to develop a working detector that utilizes
the stationary wavelet transform. Subsequently, this detector will be compared
to existing detectors and the utility of the stationary wavelet transform will be
evaluated. We will begin by outlining the experimental setup and a detailed
overview of the dataset subjected to our experiments. We will then look at the
fingerprints of generators. This will be followed by numerous experiments that
analyze and compare different detectors.

3.1 Setup

The following three subsections describe the setup of our experiments. It is
crucial to provide a meticulous and comprehensive description of the details
associated with experiments, in order to guarantee the reproducibility of the
results. These include the hardware configuration, implementation details, and
most importantly, the configuration of the numerous hyperparameters associ-
ated with deep learning.

3.1.1 Environment

All models were trained on a single node of the JUWELS Booster cluster at the
Jilich Supercomputing Centre (JSC), configured with two AMD EPYC 7402
CPUs, a total of 512GB main memory, and four NVIDIA A100-SXM4 GPUs
with 40GB RAM each. A single model was always trained on a single GPU.
However, four models were always trained simultaneously on the four available

29

GPUs to maximize resource utilization. There is no node-sharing at JSC, which
means that no other jobs were running on a node during the training process.

3.1.2 Implementation

All models and their associated training code have been implemented in Python
using PyTorch [30] (version 2.1.2). We use the implementation of PyWavelets
[24] (version 1.5.0) for the SWT and for every other wavelet transform. Al-
ternatively, we use the implementation of wavelet transforms provided in the
PyTorch-Wavelet-Toolbox [39], which markedly accelerates the computation
when carried out on the GPU.

3.1.3 Configuration

This section defines the default parameters of a training run. If any parameter
differs for a specific training process a model, it will explicitly be noted in the
corresponding subsection. We use the cross entropy loss function weighted by
the class frequencies in the training set and the Adam optimizer with a learning
rate of 3x10~%4. We train the models using 128 samples per batch. For statistical
significance, we trained every model on four different seeds ({1, 2, 3, 4}).

3.2 Dataset

Recent research into the detection of audio fakes has led to the introduction of
the WaveFake dataset [6]. The researchers synthesize audio of spoken sentences
from two popular reference sets, namely JSUT [36] and LJSpeech [15], using five
different generative network architectures. In addition to that, the WaveFake
dataset was extended by two more recent generators, as part of the work on
generalizing networks for audio deepfake detection [8]. The complete list of all
generators included in our dataset can be taken from Table 3.1.

The basic5000 subset of the JSUT dataset contains 5000 utterances of everyday
conversational Japanese spoken by a single female native speaker. The length of
the audio files ranges from 1.4 seconds to 16.4 seconds. The LJSpeech dataset
includes 13100 audio recordings of a single female native English speaker reading
passages from several different books. The length of the audio files ranges
from 1.1 seconds to 10.1 seconds. We label the original audio as real and the
synthesized audio as fake.

Figure 3.1 displays time-frequency descriptions of a sample in the LJSpeech
dataset and its corresponding synthesized version taken from the WaveFake
dataset. Interestingly, one can observe subtle differences, especially in the higher
frequency regions of the signal. But upon listening to the audio of this sample,
it is challenging to detect these differences.

30

Generator

ID Reference Set

Name Published in
R1 JSUT [36] - -
R2 LJSpeech [15] — -
Al JSUT Multi-Band MelGAN [41] 2020
JSUT Parallel WaveGAN [40] 2020
LJSpeech Full-Band MelGAN [41] 2020
LJSpeech HiFi-GAN [19] 2020
A2 LJSpeech MelGAN [21] 2019
LJSpeech Multi-Band MelGAN [41] 2020
LJSpeech Parallel WaveGAN [40] 2020
LJSpeech WaveGlow [32] 2018
B2 LJSpeech Avocodo [3] 2023
LJSpeech BigVGAN [25] 2023

Table 3.1: The composition of the dataset used for our experiments. All audio files
in subsets Al and A2 are taken from the WaveFake dataset [6] and all audio files from
subset B2 are taken from the WaveFake dataset extension [§].

3.2.1 Preprocessing

Preprocessing is essential for training of neural networks to ensure that the raw
input data matches the format expected by the network. Regarding our dataset,
the raw audio data requires a preprocessing such that it can be processed by
a CNN. In general, thorough preprocessing has been shown to accelerate con-
vergence and improve model robustness. This subsection describes our default
preprocessing pipeline. The audio data used to train a model is subject to the
following transformations in the order in which they are presented.

Resampling and Slicing

All audio files are resampled to a sample rate of 22050Hz. Once an audio file
has been loaded, a slice of size N is extracted, resulting in a vector X~. During
the training phase, a random contiguous slice from the audio data is extracted.
Conversely, for the purpose of validation and testing, a contiguous slice starting
from index zero is used. The slicing operation is comparable to the random crop
operation commonly applied to images. Both operations augment the dataset
by creating varied versions of the samples.

Stationary Wavelet Transform

The one-dimensional input vector X% is transformed using the SWT with a
given wavelet. Due to the implementation of the SWT, the input vector is
required to have a size that is a multiple of 2”, where L denotes the number of
decomposition steps of the SWT. The output is a two-dimensional coefficient
vector W of shape (L + 1, N).

31

STFT Spectrogram SWT Scalogram

e

frequency [KHz]

|
b
2
decibel [dB]
level
coefficient magnitude

(a) Original audio from LJSpeech

STFT Spectrogram SWT Scalogram

T T |

frequency [KHz)
|
b
5
decibel [dB]
level
coefficient magnitude

0.8 1.0 12 14 16 0.8 1.0 12 14 16
time [sec] time [sec]

(b) Synthesized audio from Full-Band MelGAN

Figure 3.1: Spectrograms (left column) and scalograms (right column) of an one-
second slice from an utterance contained in the LJSpeech corpus. The first row depicts
the original recording and the second row depicts its synthesized counterpart generated
with Full-Band MelGAN. The spectrograms were created using the STFT with the
Hann window computing 1025 frequency bands. The scalograms display the resulting
coefficients from a 15-level SWT using the Daubechies (db4) wavelet.

Normalization

The normalization of the coefficients involves three steps. First, we take the
logarithm of the absolute coefficient values. This reduces the range between
very small and very large values, but also removes the sign from all values.
Second, we zero-center the values by subtracting the mean of all coefficients in
the training set. Finally, we divide all values by the standard deviation of all
coefficients in the training set. Generally, this normalization ensures an even
distribution of the features present in the training data, which is recommended
for training CNNs [1]. Since the coefficient vectors of all samples in the training
set usually did not fit into memory, we had to employ an iterative approach to
computing mean and standard deviation, called Welford’s online algorithm.

32

3.3 Fingerprints

While most recent advances on generators make real and fake voices indistin-
guishable for the human ear, there still exist differences detectable for machines.
The question, if generators leave artificial fingerprints has been addressed by
Marra et al. in their research paper [29]. Although, their work focused on im-
age data, the proposed method can also be used for audio data. For some input
X; and some denoising filter f(-), one extracts a noise residual R; by computing
R; = X; — f(X;). The authors assume the residual to contain a deterministic
non-zero component (the fingerprint) and some random noise component. Now,
given N input samples, by averaging over all their residuals, one can estimate
the fingerprint

1 N
F:N;Ri. (3.1)

Intuitively, for small N, the fingerprint is dominated by some noise component.
However, as N grows, this noise component tends to vanish. Eventually, this
estimate converges to a stable pattern and what remains is an approximation
of the fingerprint [29].

In this work, we discovered fingerprints using the stationary wavelet transform
for every reference set and for every available generator. We transformed the
first 2% samples (~ 1,48 seconds) of every audio file using a 15-level SWT with
the Haar wavelet. We then reconstructed the audio signal using the inverse
SWT twice, once with all coefficients, and once with all coefficients but the first
level wavelet coefficients set to zero. Since the first level wavelet coefficients
contain information about the top half of the frequency spectrum, the second
reconstruction gives a low-passed signal, which acts as our denoising filter. By
taking the difference of these two reconstructed signals, we high-passed the audio
signal and yield the desired noise residuals. Figure 3.2 depicts spectrograms
of fingerprints of the LJSpeech dataset and of three different generators on
LJSpeech. The generator fingerprints are easily distinguished from the reference
set by their artifacts. Moreover, individual peak frequencies can be identified.
These peak frequencies are also audible, but not pleasant to listen to.

The question now arises as to whether these fingerprints are also recognizable
by the coefficients of the stationary wavelet transform. We transformed every
fingerprint using a 15-level SWT with several different wavelets and made two
important observations. First, the examination of the mean absolute coefficient
magnitudes, depicted in Figure 3.3, shows differences between the fingerprint of
a reference set and the fingerprint of any generator on the respective reference
set. This assures that differences in the fingerprints, which we observed in
Figure 3.2, are also reflected in the coefficients. However, it does not provide
a clear distinction between the reference and generator fingerprints. It is also
noteworthy that the magnitude and distribution of the absolute differences in
coefficient magnitudes across the decomposition steps depend on the wavelet
used in the SWT.

33

MelGAN

LJSpeech (reference set)

10

frequency [KIlz]
frequency [KHz]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 %
time [sec] time [sec| 403

-]

Full-Band MelGAN HiFi-GAN _§

frequency [KHz]

frequency [KHz]

| | |
1 @ @
= S S

—80
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time [sec] time [sec|

Figure 3.2: Spectrograms of four fingerprints. The top left shows the fingerprint of
the reference set LJSpeech. The top right, bottom left, and bottom right show the fin-
gerprints of MelGAN, Full-Band MelGAN, and HiFi-GAN, on LJSpeech, respectively.
All spectrograms were created using the STFT with the Hann window computing 1025
frequency bands. The fingerprint of the reference set is visible in the fingerprints of
the generators. The spectrograms of the generator fingerprints show noisy artifacts
with distinguishable frequencies, mostly in the upper half of the frequency spectrum.

GAN fingerprints are expected to be predominantly contained in the high-
frequency components of a signal [43], which are mainly represented by the first
decomposition step of the SWT. While differences in coefficient magnitudes can
also be observed in the first level coefficients, this raises the question of whether
these differences are sufficient for a neural network to detect a generator finger-
print. In the forthcoming sections, empirical evidence will be presented in an
attempt to answer this question.

The second important observation arises from the investigation of correlations
between the coefficients. The inspiration for this investigation was the work of
Marra et al. [29], where the correlation between the fingerprints of generator
models has been studied. For each generator, the researchers sampled 1000
images using each of their chosen prompts to the model. The fingerprints were
then estimated based on 512 samples. The remaining samples were used to
calculate the average correlation between them and the fingerprints. A key
finding is that the samples not only correlate with the fingerprints of their
generator, which uses the same input prompt, but also with fingerprints of their
generator using other input prompts. This, however, depends on the GAN [29].

34

E 100 4 —®- LJSpeech ', E 4 —@- LJSpeech ’ E 4 —@®- LJSpeech "
e MelGAN t e —@- Multi-Band Mel GAN e —@®- Parallel WaveGAN ’I
E 10-1 ;4.\ absolute difference | § li absolute difference ﬁ .‘ absolute difference |
£ 3 D) | LI £ !
) ‘e, - (") e !
& - | & 2 g ALY]
2102 . i g 4 T 54 ., 1
i ®oeo ! i o200 g 04002 %04
g bl g D ae 22 g e
£ 10 p B
8 8 8
g g g
§ 10714 g 4 g 4
g g g

———— T

— T — T —T—
0 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
level of decomposition level of decomposition level of decomposition

o
o

(a) SWT decompositions using the Daubechies (db2) wavelet

ERRTR —®- LJSpeech '9 ®] -e- LISpeech ? | B —e- LJSpeech ‘9
g MelGAN 1 g —@®- Multi-Band MelGAN g —®- Parallel WaveGAN |
1
% 10-1 N absolute difference | § l\\ absolute difference 'a: absolute difference "
2 4 h E E]
1 I
fe] nhes] Ree 1 R :
] » 1 2 L) -1 e
=} 000y 5} D00 00 & -9-0-9- 0.4
< 1 3} 5}
e} Pee, g ¢ o0 oo g ®%ee
£ 1072 £ 4 & 4
8 8 g
< < ©
= = =
=
— T — T —T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
level of decomposition level of decomposition level of decomposition

(b) SWT decompositions using the Coiflet (coif4) wavelet

Figure 3.3: Mean absolute coefficient magnitudes returned from a 15-level SWT de-
composition of four fingerprints, namely the LJSpeech reference set, MelGAN, Multi-
Band MelGAN, and Parallel WaveGAN. The gray bars show the absolute differences
of the mean absolute coefficient values for every level of the decomposition. Differences
of the coefficient values can be observed across all decomposition steps. Note, that
decomposition level 16 represents the scaling coefficients at level 15.

We computed the correlation between SWT coefficients of the reference finger-
print and the mean SWT coefficients of the fingerprints of all generators. The
results for two different wavelets are presented in Figure 3.4. First of all, the
large diagonal entries signify a very strong correlation of every coefficient vector
with itself, which is to be expected. It is notable, however, that there are also
weak correlations between coeflicient vectors, especially in neighboring vectors.
Furthermore, weak correlations within the mean fingerprint of all generators
indicate that there are some commonalities across all fingerprints.

Besides correlations within the fingerprints, we also observe correlations be-
tween the counterparts, shown by non-zero values in the lower left and upper
right sections of both plots. What is particularly interesting here is that these
correlations are more apparent in the later steps of the decomposition. At the
same time, no correlations can be seen here in the first steps of the decomposi-
tion. This indicates measurable differences in the higher frequency ranges and

35

0.50

0.25

0.00
—0.25 —0.25
—0.50 —0.50

—0.75 —0.75

—1.00 —1.00

(a) Daubechies (db2) wavelet (b) Daubechies (db8) wavelet

Figure 3.4: Correlations of SWT coefficients returned from 14-level decompositions
using the two different wavelets from the Daubechies family. The upper left section
of both plots displays correlations within the fingerprint of the LJSpeech reference set
(R2). In contrast, the lower right section of both plots displays correlations within the
mean coefficients of all generator fingerprints of the original WaveFake dataset (A2).
The lower left and upper right sections of both plots display correlations between the
respective counterparts. Values close to zero indicate no correlation, whereas values
approaching one or minus one indicate a strong correlation. The rows and columns
correspond to the coefficient vectors of the decompositions.

is consistent with the finding that GAN fingerprints are more prevalent in the
high frequency range of a signal.

3.4 1-dimensional vs 2-dimensional CNNs

Before we delve deeper into convolutional neural networks to solve the clas-
sification task at hand, let us quickly state an interesting observation. After
transforming an arbitrary audio signal into a time-frequency description, one
inherently yields a two-dimensional result. It can be observed that due to the
presence of harmonies or overtones in a given signal, two or more frequencies can
correlate with each other. Similarly, neighboring scales obtained from a wavelet
transform are also not independent of each other. Referring back to Figure 3.1,
we can see such relationships between different frequencies and scales.

The question thus arises as to whether there is a clear advantage to the use of
two-dimensional convolutional layers when processing time-frequency descrip-
tions of audio signals. In a one-dimensional CNN, the kernel slides along the
time dimension and correlations between scales are represented by connections

36

LJSpeech Full-Band MelGAN LJSpeech Full-Band MelGAN
2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14
L L L L 1.00 L L L L

0.00 0.00

10 10 —0.25 10 10 —0.25

1.00 1.00

(a) Haar wavelet (haar) (b) Daubechies wavelet (db2)
LJSpeech Full-Band MelGAN LJSpeech Full-Band MelGAN
2 6 10 14 2 6 10 14 2 6 10 14 2 6 10 14
L L L L 1.00 L L L L 1.00
2 2 075 2 2 0.7
0.50 0.50
6 | 6 | 0.25 6 6 0.2
| 0.00 0.00
10 10 —0.25 10 10 —0.2
—0.50 —0.50
14 14 075 1 14 0
—1.00 —1.00
(c) Symlet (sym4) (d) Coiflet (coifl)

Figure 3.5: Correlations of SWT coefficients. Sample LJ001-0001 from the LJSpeech
dataset and its counterpart generated by Full-Band MelGAN were transformed by a
14-level SWT with four different wavelets. Values close to zero indicate no correlation,
whereas values approaching one or minus one indicate a strong correlation. The rows
and columns correspond to the coefficient vectors of the decompositions.

between the input and output channels of the convolutional layers. In a two-
dimensional CNN on the other hand, the kernel slides along the time and the
scale dimension of the input, while the channel dimension remains available for
learning additional features. Consequently, the two-dimensional CNN has an
enhanced expressive capability.

Figure 3.5 depicts correlations of SWT coefficients. It is expected that every
coefficient vector of some level has a strong correlation to itself, hence the large
diagonal entries. However, we can also observe weaker correlations between
coefficient vectors of neighboring levels. While this analysis confirms our the-
oretical considerations on a sample basis, we also tried to gather experimental
evidence using two simple convolutional networks.

Both networks comprise six convolutional layers and one final fully connected
layer. The key difference between the two networks is that one, named Wide6-
1d, employs one-dimensional convolutions, whereas the other, named Wide6-2d
employs two-dimensional convolutions. Both networks receive the same SWT
coefficients as input, which is of crucial importance to this experiment. The one-
dimensional variant processes the coefficient vectors as separate input channels.
In contrast, the two-dimensional variant employs the coefficient vectors as a
second dimension for the kernel. Therefore, the two-dimensional variant has
one additional kernel dimension and thus slightly more learnable parameters.

37

. Wide6-1d . Wide6-2d B Wide6-1d . Wide6-2d

validation 0.9
® test

ss (log)
a

mean los

= validation

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch

(a) Mean validation and test loss (b) Mean validation and test accuracy

Figure 3.6: Training progress of Wide6-1d (green) and Wide6-2d (purple) CNNs.
The plot on the left shows the progression of the mean validation loss and the final
test loss. The plot on the right shows the progression of the mean validation accuracy
and the final test accuracy.

Both networks have an equal sized fully connected layer, which ensures a fair
and impartial comparison. The total number of learnable parameters for the
Wide6-1d and the Wide6-2d networks, respectively, is 139218 and 164 538.

We train both networks on the combined dataset R1 and A1 for 80 epochs using
the default preprocessing pipeline. In addition to the default training setup we
use a decaying learning rate that reduces by a factor 10 every 20 epochs. Figure
3.6 depicts the training progress for both networks.

The two-dimensional model appears to initially learn at a slightly faster rate
than its one-dimensional counterpart. However, after sufficient training epochs,
both models converge to similar validation loss and accuracy. In addition, the
test loss and accuracy at epoch 80 are strikingly similar. Wide6-1d achieves
a test accuracy of 87.84% =+ 0.41% and Wide6-2d achieves a test accuracy of
87.13% +2.69%. These findings demonstrate that the choice of one-dimensional
or two-dimensional convolution has little impact on the results obtained. When
the computational effort is a concern, a one-dimensional network should be
preferred due to its reduced number of learnable parameters.

3.5 Transfer Learning with ResNet-50

Before developing custom network architectures tailored to the detection of fake
audio, we attempt to leverage the transfer learning technique and benefit from
an existing pre-trained model, namely ResNet-50 from the popular ResNet fam-
ily. The concept of residual learning and its advantages for deep convolutional
networks was presented in Section 2.2.4.

38

A common scenario for transfer learning involves using a pre-trained CNN as a
fixed feature extractor, retaining its weights and using its output as input for
a classifier network. Alternatively, the pretrained weights can be used to fine-
tune the CNN further. We will now experiment with fine-tuning the pre-trained
ResNet-50 to detect audio deepfakes. It can be reasonably assumed, that the
degree of similarity between image data and time-frequency representations of
audio signals is very small. It is, however, still possibile to benefit from pre-
trained weights in practice [2].

The convolutional layers of any ResNet architecture can be organized in five
groups. The first convolutional layer of each group performs a striding operation
along both axes, except the one of the second group. In this group, however,
there is a max-pooling operation with a stride of two. Therefore, the input size is
divided by two for a total of five times along both dimensions. Here it becomes
apparent, that we can not use the SWT coefficients as input to ResNet-50,
unless we compute a 31-level SWT of the input, which would require a signal of
length 23!. This is not possible with our dataset. Even if we had such a signal,
the ResNet would only reduce it to length 226. This in turn would require an
extremely large fully connected layer, which is not desirable, because it induces
many extra parameters.

The above considerations have led us to the decision to transform the coefficients
in a way such that their shape matches the expected shape of (3, 224, 224). This
makes adjusting the models fully connected layer easier, where solely the number
of output channels has to be set to 2. We experimented with three different
approaches to reshaping the input, which will be described in the following
paragraphs.

A: Duplicates

In this approach, we begin by slicing the coefficient vector in order to match the
expected width. We then repeat every sliced vector in an interleaved fashion
to match the expected height. Finally, we create two copies of the coefficients,
each for one of the missing color channels.

B: Chunked

Here we split the coefficient vector into chunks matching the expected width.
Subsequently, 15 unique chunks are concatenated to match the expected height.
This procedure is repeated for every of the three color channels.

C: Three Frequency Bands

This approach is similar to B, but before chunking we partition the coefficient
vector into three frequency bands. Then we require the concatenation of 45
unique chunks in order to match the expected height.

A visualization of the differences of these three reshaping approaches can be
found in Figure 3.7. It is evident that approach A inevitably creates a lot of
duplicated values. However, what all of these approaches have in common is
that they differ significantly from the typical input image that a ResNet would
expect.

39

I B e e i

Figure 3.7: Visualization of four different inputs for the ResNet-50 model. The first
three images display the same SWT coefficient vector after reshaping with our different
methods (in order A, B, C). The image on the right displays a sample (n02206856__bee)
from the ImageNet dataset.

For this experiment, the existing ResNet-50 implementation of PyTorch has
been used. The pre-trained model was initialized using weights, that closely
reproduce the results obtained in the original paper [14]. We train one randomly
initialized and one pre-trained ResNet-50 on the combined dataset R1 and Al
for 20 epochs. Before reshaping we employ the default preprocessing pipeline.

Figure 3.8 shows the progress of the loss values and accuracies during the train-
ing process. All pre-trained models start with a significantly smaller loss com-
pared to their randomly initialized counterparts. However, the validation accu-
racies prior to the first training epoch do not show a similar advantage of the
pre-trained models. Only the pre-trained models that receive "chunked" inputs
exhibit a notably higher initial validation accuracy. The randomly initialized
models converge in loss and accuracy with their pre-trained counterparts after
only a few training epochs. This indicates that there is no clear benefit of having
pre-trained weights. Overall, the progression of the mean validation loss and the
mean validation accuracy show no discernible improvement, suggesting an in-
ability to learn the classification task. A quick glance at the validation and test
accuracies serves to confirm this conclusion. None of the models reach a mean
test accuracy of 80% or above. Given the success of the ResNet-50 network in
the image classification domain and its large number of learnable parameters,
this raises the question, why we were unable to utilize the ResNet-50 to detect
audio fakes.

The following paragraph seeks to answer to this question. We will begin by
examining the nature of the inputs and the architecture of the network. As
previously noted, reshaping approach A creates a lot of duplicated values. To
be more precise, almost 98% of the values are duplicates, and in turn, only
2% of the values carry relevant information. Nevertheless, approaches B and C
do not include any duplicates, yet still achieve only marginal improvements in
performance. With regard to the pre-trained weights, it can be assumed that
the characteristics in the SWT coeflicients differ significantly from the learned
characteristics of image inputs. Despite the well-distributed input of SWT co-
efficients resulting from the normalization during preprocessing, the learned

40

ResNet-50 (A) B ResNet-50 (B) ResNet-50 (C) ResNet-50 (A) BN ResNet-50 (B) ResNet-50 (C)

(log)
y
o
3

mean loss

epoch epoch

(a) Mean validation and test loss (b) Mean validation and test accuracy

Figure 3.8: Training progress of the ResNet-50 variants. The reshaping approaches
A, B, C are indicated by the colors pink, cyan and orange, respectively. Solid lines
identify the randomly initialized models, dashed lines identify the pre-trained models.

distribution appears to be different. Finally, we will attempt to explain why
the randomly initialized network still achieves a comparable performance. In
a recent publication, Frankle et al. stated the lottery ticket hypothesis, which
suggests that a randomly initialized dense neural network contains a subnet-
work that can match the test accuracy of the original network when trained in
isolation. The experiments conducted on fully-connected networks and convo-
lutional networks, including popular architectures such as ResNet, have shown
the existence of subnetworks whose initial weights of their connections are par-
ticularly suitable for isolated training. Because such subnetworks are able to
achieve test accuracies comparable to the original network, Frankle et al. call
them winning tickets [7]. It is possible for our randomly initialized models to
contain subnetworks that are winning tickets.

In summary, independent of the initialization, our models began converging
after only a few training epochs. The mean test accuracy of all model variants
remains below 80%. These findings have led to the decision to cease further
investigation of the transfer learning approach using a ResNet architecture.

41

3.6 Wide Residual CNNs

The previous section indicated difficulties associated with the processing of SWT
coefficients for CNNs due to the shape of the coefficient vector. Recall, that the
first and the second dimension of such a vector represent the decomposition steps
and the sample steps, respectively. It is also important to remember that there
is no downsampling in the SWT. Consequently, each decomposition step yields
N coefficients. The size of the second dimension therefore is significantly larger
than the size of the first dimension, as the number N of samples in the source
signal was selected to such that the number of desired levels equals L = loga(N).
The subsequent section will examine residual convolutional networks that are
designed to process such inputs, which we refer to as wide inputs.

Recent research into audio deepfake detection presented promising results for
convolutional architectures, especially in combination with time-frequency rep-
resentations [22, 8]. As outlined in Section 2.2.4, deep CNNs benefit from resid-
ual learning. In this thesis we will thus try to combine convolutional architec-
tures with residual learning. More precisely, we designed four different residual
CNNs using residual blocks that closely follow the original implementation of
the ResNet blocks. Two networks, named Wide-16 and Wide-24, exclusively
employ basic residual blocks. Two additional networks, named Wide-19 and
Wide-32, also utilize bottleneck residual blocks.

layer output size Wide-16 Wide-19 kernel stride dilation
basic(1, 4) basic(1, 4) (3,4) (1,20 (1,2
1 (8 x 2048) basic(4, 8) basic(4, 8) 3 (1, 2) 1
basic(8, 8) bottleneck(8, 8, 2, 1) 3 1 1
maxpool maxpool 2 1 1
basic(8, 16) basic(8, 16) (3,4 (1,20 (1,2
, (4x512) basic(16,32) basic(16, 32) 3 (L2 1
basic(32, 32) bottleneck(32, 32, 2, 1) 3 1 1
maxpool maxpool 2 1 1
basic(32, 64) basic(32, 64) 3 1 1
maxpool maxpool 2 1 1
3 (1364 4 osic(64, 128) bottleneck(64, 64, 4,2) 3 1 1
maxpool maxpool 2 (1, 2) 1
4 (1x2) fc(8192, 2) (8192, 2)
conv layers 16 19
parameters 344.574 112.526

Table 3.2: Architecture of the Wide-16 and Wide-19 networks. We use the definition
of the basic and bottleneck residual blocks given in equation (2.30). The first two
parameters represent the input and output channels of the layer. For better readability,
we fix the expansion parameter e of the basic block to 1. The columns kernel, stride,
and dilation represent the parameters k, s, and d, respectively. The difference between
the two networks is highlighted in bold.

42

layer output size Wide-24 Wide-32 kernel stride dilation

basic(1, 4) basic(1, 4) (3,4) (1,2) (1,2
1 (15 x 4096) basic(4, 8) basic(4, 8) 3 (1,2) 1
basic(8, 8) basic(8, 8) 3 1 1
basic(8, 16) basic(8, 16) (3,4 (1,2) (1,2
2 (15x1024) basic(16, 32) basic(16, 32) 3 (L2 1
basic(32, 32) basic(32, 32) 3 1 1
basic(32, 48) basic(32, 48) 3 2 1
basic(48, 64) basic(48, 64) 3 2 1
s
8 (X26) o Gc(64, 64) bottleneck(64, 64, 2, 1) 3 1 1
bottleneck(64, 64, 2, 1) 3 1 1
basic(64, 96) basic(64, 96) 3 2 1
4 (1 x 64) basic(96, 128) basic(96, 128) 3 2 1
basic(128, 128) bottleneck(128, 128, 4, 1) 3 1 1
bottleneck(128, 128, 4, 1) 3 1 1
5 (1x2) £c(8192, 2) £c(8192, 2)
conv layers 24 32
parameters 946.526 639.838

Table 3.3: Architectures of the Wide-24 and Wide-32 models. We use the definition of
the basic and bottleneck residual blocks given in equation (2.30) and fix the expansion
parameter e of the basic block to 1. The difference between the two networks is
highlighted in bold.

The number of convolutional layers for our Wide-16 and Wide-19 networks is
16 and 19, respectively. In the Wide-19 network, we replace the final basic
residual block of each layer with a bottleneck residual block. The number
of convolutional layers for our Wide-24 and Wide-32 networks is 24 and 32,
respectively. In the Wide-32 network, we replace two basic residual blocks of
the final two layers with two bottleneck residual blocks. The aforementioned
modifications account for the increase in convolutional layers. It is important to
ensure identity mappings for the shortcut connections in order to capitalize on
the computational efficiency of residual blocks. This is particularly important
for the bottleneck block [14]. In doing so, the Wide-19 and Wide-32 have
a considerably lower number of learnable parameters in comparison to their
counterparts, despite the increase in the number of convolutional layers. In this
context, it is important to emphasize that all networks have an equal sized final
fully connected layer with 8192 input units and 2 output units. A comprehensive
overview of the architectures can be found in Table 3.2 and Table 3.3. In our
networks, we use the LeakyReLU [27] activation function for all detector layers.

In this experiment, we exclusively train our models on a single generator model
and evaluate their generalization capabilities on all available generator models.
Research prior to this work suggests that training a classifier on Full-Band
MelGAN results in a better generalization compared to other generator models
[6]. We adopt these results and proceeded to train our models on Full-Band
MelGAN. The training dataset included a 70% random subset of the synthesized

43

Figure 3.9: Venn diagram illustrating the composition of the evaluation dataset. The
blue area represents the training set, while the red area represents the evaluation set.
R, ..., Re represent samples from the reference set, F1, ..., Fs represent samples from
Full-Band MelGAN, and Xi,..., X represent samples from some unseen generator.
Note, that the evaluation set includes the same sample IDs (3,4) for both generators.

audio by Full-Band MelGAN (A2) and of the reference samples in LJSpeech
(R2). The training of a single model for 40 epochs took approximately one
hour.

3.6.1 Evaluation

This subsection explains the evaluation methodology and presents the results
of our models. All models were evaluated exclusively on unseen samples, which
is the standard for assessing the performance of neural networks. However, we
impose one additional constraint on our evaluation dataset. Since we trained our
models using fake samples synthesized only by Full-Band MelGAN, there exist
many unseen synthesized samples from all the other generative models in the
dataset. In order to ensure a fair comparison between the generators, we map
the unseen fake samples encountered during the training phase to the same fake
samples of each other generator. In particular, we collect the unseen sample IDs
and then select the same sample IDs for the other generative models. Hence,
the model to be evaluated has to predict the same non-authentic utterances
for all generators. The diagram shown in Figure 3.9 serves to illustrate this
methodology.

All models that are compared within this thesis were trained exclusively on
LJSpeech reference samples (R2) and synthetic samples generated by Full-Band
MelGAN (A2). This applies especially to baseline models and any other model
used for comparison. The evaluation of the baseline models on the original
WaveFake dataset was performed by Frank et al. [6]. The evaluation of the
baseline models on the extended WaveFake dataset was done by Gasenzer et al.

44

Accuracy

%] Average EER
max pwEto min uwto

SWT-db4 69.08 66.29 £2.12 0.299 0.331 £0.022
SWT-db8 68.39 67.49 £1.19 0322 0.334 £0.011

Network Input

Wide-16 oW aym7 7156 68.74 £1.72 0.274 0.312 +0.025
SWT-coif9 70.04 69.06 £1.17 0.286 0.294 +£0.005

SWT-db4 67.87 64.92 £3.22 0.314 0.334 £0.019

Wide-19 SWT-db8 67.14 66.11 £1.11 0.325 0.346 +£0.013
“ SWT-sym7 66.87 66.27 £0.56 0.307 0.325 £0.019
SWT-coif9 69.00 68.06 £0.62 0.270 0.308 =+ 0.022

SWT-db4 68.89 67.76 £0.69 0.285 0.320 £0.021

Wide-24 SWT-db8 69.69 68.58 £0.86 0.266 0.300 £ 0.022
SWT-sym7 7243 70.24 £2.11 0.264 0.297 £0.030

SWT-coif9 70.27 69.77 £0.53 0.278 0.304 £0.018

SWT-db4 68.52 67.08 £1.30 0.276 0.312 +0.026

Wide-32 SWT-db8 68.01 66.99 £0.68 0.317 0.343 +£0.019
SWT-sym7 70.12 68.66 +£1.38 0.280 0.312 £0.028

SWT-coif9 69.37 67.97 £1.18 0.291 0.313 £0.018

GMM [] LFCC - — 0.062 -
RawNet2 [6] raw - - 0.363 -

Table 3.4: Evaluation results of the wide residual CNNs on the original WaveFake
dataset including JSUT (R1, R2, A1, A2). The second column presents the different
input types processed by the networks. In addition, the last two rows provide a
comparison to the baseline models. Results highlighted in blue represent the best
values within their respective columns, ignoring the baseline models.

[8]. Our models have been evaluated independently for every generator using
the evaluation set. This enables us to precisely analyze the generalization to
the different generator models. The final result of a model is presented using
the mean over its evaluations. Since we trained our models on four different
random seeds, we compute the mean, denoted by p, and standard deviation,
denoted by o, over the evaluation results.

Besides the prediction accuracy, which is defined as the fraction of correctly
predicted samples out of the total number of evaluated samples, we provide an
additional evaluation metric called equal error rate (EER). This metric is partic-
ularly suitable for assessing the performance of binary classifiers. Consequently,
it is frequently used in the evaluation of biometric security systems and is also
part of the evaluation in the ASVspoof challenge [38]. Formally, it is defined
as the point on the receiver operating characteristic (ROC) curve, where the
false acceptance rate and the false rejection rate are equal. Intuitively, it can
be described as the rate of incorrectly accepted and incorrectly rejected sam-

45

Accuracy [%] Average EER

Network Input

max uwEto min uwto

Widels SWT-sym7 7259 70.50 £1.25 0.263 0.292 £0.019
© SWT-coif9 71.47 70.34 +1.36 0.274 0.282 +0.005
Widelo SWT-sym7 6880 68.06 £0.72 0.204 0.306 £0.014
SWT-coifo 70.71 69.67 +0.78 0.261 0.292 + 0.018

Wides SWTsym7 7341 7197 +£142 0256 0.277 £0.021
rae SWT-coifd 71.53 71.09 +0.47 0.273 0.287 4 0.011
Widegy SWT-sym7 7L73 70.30 £1.32 0265 0.292 £0.023
SWT-coif9 71.15 69.74 +1.02 0.276 0.295 + 0.014

GMM [6, 8] LFCC - — 0.145 —

Table 3.5: Evaluation results of the wide residual CNNs networks on the extended
WaveFake dataset including JSUT (R1, R2, Al, A2, B2). The second column presents
the different input types processed by the networks. Results highlighted in blue rep-
resent the best values within their respective columns, ignoring the GMM model.

ples. With regard to the detection of audio deepfakes, an incorrectly accepted
sample means predicting a fake sample as authentic. Conversely, an incorrectly
rejected sample means predicting an authentic sample as fake. The EER pro-
vides a single measure for the overall accuracy of binary classifiers. Values equal
to zero indicate no wrong predictions, whereas values equal to one indicate only
incorrect predictions. A value of 0.5 can be interpreted as guessing [6].

The evaluation results of all models are presented in Table 3.4 and Table 3.5.
It can be observed, that the choice of the wavelet can impact the performance
of the model. The Symlet and Coiflet wavelets seem to be more suitable than
wavelets from the Daubechies family, as all models consistently achieve slightly
higher recognition rates. Generally, wavelets with larger filter length result
in better model performance. The Wide-16 and Wide-19 models achieve best
recognition rates using the coif9 wavelet. The Wide-24 and Wide-32 models on
the other hand achieve best recognition rates using the sym7 wavelet. Overall,
with a mean accuracy of 70.24% +2.11%, the Wide-24 network achieves the best
performance of all our models evaluated on the original WaveFake dataset. The
recognition rates surpass those of RawNet2, which served as a lower baseline
in several ASVspoof challenges. Frank et al. showed that RawNet2 does not
generalize well on the original WaveFake dataset, hence its high EER of 0.363
when evaluated on the entire dataset [6]. Our models, on the other hand, appear
to generalize well on unseen fake samples. Remember that all fake samples
contained in the training set originate from Full-Band MelGAN. Therefore, the
models were able to successfully detect the remaining five unseen generative
networks. However, the recognition rates are considerably lower than those of
the GMM on the LFCC features.

46

The results presented in Table 3.5 also demonstrate satisfactory performance
on the extended WaveFake dataset, indicating that the models are also able
to detect newer generators. The models are able to detect fake samples from
BigVGAN and Avocodo without any significant loss of accuracy. Nevertheless,
the recognition rates observed here are also considerably lower than those of the
GMM. A comparison with the performance of more recent detectors, which will
be presented in the following section of this thesis, shows that our results are
not competitive.

3.7 Comparison to DWPT models

This final section of the chapter will present a comparative analysis of the po-
tential of the stationary wavelet transformation with that of other methods. We
have already compared the recognition rates of our four models processing SWT
coefficients with the baseline models, RawNet2 and GMM. While these baseline
models were a good starting point for our analysis, they cannot be considered
the current state of the art in audio deepfake detection. We will therefore com-
pare our results with the performance of more recent detector models.

First, we will consider the already mentioned LCNN. While this model was orig-
inally designed to process Fourier transform coefficients, Gasenzer et al. also
evaluated this network processing DWPT coefficients. Interestingly, this re-
sulted in a considerable improvement [8]. In addition, they designed the Dilated
Convolutional Neural Network (DCNN), which consists of 9-layer convolutional
layers and a final fully connected layer. The last two convolutional layers utilize
dilated kernels. Aside from the STFT, the wavelet packet transform with a
variety of wavelets was used as input to this model. Their experimental results
show very good recognition rates for samples from unseen generators [8].

Apart from the GMM, our models have not been compared with any other
detector architectures than convolutional neural networks. Recently, a purely
attention-based architecture called Audio Spectrogram Transformer (AST) [9]
has been proposed. The input to the AST consists of audio spectrograms split
into 16 x 16 patches, which are linearly projected to one-dimensional patch
embeddings. Then, a positional encoding is added to each embedding. A trans-
former model processes these embeddings and its output is used for classification
in a final fully connected layer. The AST demonstrated good results for audio
classification [9]. This suggests that it could also be used to detect audio deep-
fakes. Gasenzer et al. also evaluated the AST on the WaveFake dataset, which
also showed good recognition rates [8].

Building upon the success of the DCNN, we have designed two residual con-
volutional networks, named WPT-Basic and WPT-Bottle, which also process
DWPT coeflicients. Please refer to Table 3.6 for details regarding their archi-
tecture. One crucial difference compared to the architecture of the networks
presented in Section 3.6 is the absence of strided convolutions, because the

47

layer output size WPT-Basic WPT-Bottle kernel

basic(1, 4, 1) basic(1, 4, 1) 5
1 (128 x 128) basic(4, 8, 2) basic(4, 8, 2) 3
maxpool maxpool 2
basic(16, 24, 2) bottleneck(16, 16, 2, 4) 3
2 (64 x 64) basic(24, 32,2) — 3
maxpool maxpool 2
basic(64, 96, 1) bottleneck(64, 64, 2, 1) 3
maxpool maxpool 2
3 (16 x 16) basic(96, 128, 1) bottleneck(64, 64, 4, 2) 3
maxpool maxpool 2
4 (1x2) £c(32 768, 2) £c(32768, 2)
conv layers 12 13
parameters 487.314 65.122

Table 3.6: Architectures of the WPT-Basic and WPT-Bottle models. We use the
definition of the basic and bottleneck residual blocks given in equation (2.30). The
stride and dilation parameter are fixed to their default value of 1. For this illustration
the input for both models has shape (256 x 256). The difference between the two
models is highlighted in bold.

downsampling in the DWPT can be regarded as a striding operation. Instead,
we use the maximum pooling layers to reduce spatial dimensions.

In our preprocessing pipeline, we replaced the SWT with the DWPT. Specifi-
cally, we compute a 8-level DWPT which yields 28 = 256 frequency bins. We
chose the signal length N such that N/2-~! approximately matches 256. Given
L = 8, this results in a required signal length of 32768 samples. In this cal-
culation we disregarded the fact that the different filter lengths of the wavelets
produce different numbers of coefficients. Nevertheless, for an approximately
square-shaped coefficient vector, this approach is sufficient. We trained both
networks for 80 epochs. In addition to the default training configuration, we
schedule the learning rate to decay by a factor of 10 at epoch 25 and 50.

Table 3.7 presents a comparison of the best performing models trained in the
context of this thesis with current the state of the art in audio deepfake de-
tection. It is clearly evident that the wide residual CNNs that process SWT
coefficients are unable to match the performance of the other models. However,
the residual CNNs that process DWPT coeflicients, namely WPT-Basic and
WPT-Bottle, show promising results. Notwithstanding a slightly lower mean
accuracy compared to the DCNN;, their average EER appears comparable to the
state of the art. As in previous observations, wavelets with higher filter lengths
lead to better recognition rates.

48

Accuracy [%)] Average EER

Network Input
max {4+ o min nwto

Wide-16 SWT-coif9 71.47 70.34 £1.36 0.274 0.282 £+ 0.005
Wide-19 SWT-coif9 70.71 69.67 £0.78 0.261 0.292 £0.018
Wide-24 SWT-sym7 73.41 7197 £1.42 0.256 0.277 +£0.021
Wide-32 SWT-sym7 71.73 70.39 £1.32 0.265 0.292 +0.023

DWPT-dbs 88.10 87.04 £0.82 0.064 0.065 £+ 0.001
DWPT-symb 87.12 86.58 £0.33 0.061 0.066 +0.003
WPT-Basic DWPT-sym9 88.83 87.68 £0.79 0.056 0.060 £ 0.004
DWPT-coif8 88.42 87.45 £0.71 0.065 0.074 +0.005

DWPT-dbb 86.80 85.13 £1.04 0.083 0.089 +0.005
DWPT-sym7 8792 86.90 £0.86 0.058 0.077 £0.012

WPT-Bottle pwprgymo 00.60 8872 £1.33 0067 0.073 +0.005
DWPT-coif8 90.72 89.07 £1.00 0.077 0.085 +0.007

STFT 9646 9172 £2.94 0.036 0.159 +0.150

DeNN 5 DWPT-db5 9688 OL65 =185 0.048 0082 +0.042

DWPT-sym5 97.70 9525 +£3.09 0.031 0.069 -+ 0.036

DWPT-coif8 98.72 9739 +1.80 0.026 0.079 +0.047

STFT 91.65 79.21 +16.55 0.083 0.169 +0.101

LONNI35, 8] ywprosyms 9746 9012 £644 0067 0.108 +0.042
sty STET 0098 87.10 £2.54 0.089 0.122 +0.021

) DWPT-sym5 9349 91.25 £1.38 0.065 0.087 +0.013

GMM [6,8] LFCC - — 0145 -

Table 3.7: Comparison of our models with the state of the art. Evaluation on unseen
samples of the extended WaveFake dataset including JSUT (R1, R2, Al, A2, B2).
The values highlighted in blue represent the best results within our models, ignoring
the results of all other models. The values highlighted in bold represent the current
state of the art in audio deepfake detection.

We will now conclude the experimental chapter with a detailed discussion of
the findings. All of the models designed in the context of this thesis were
deep residual CNNs with residual blocks that closely follow the original ResNet
implementation. Yet we can observe significant differences in their recognition
rates. This observation suggests that one of the driving factors behind these
differences must be the nature of the input. The wide residual CNNs received
SWT coefficients, whereas the other two models received DWPT coefficients. It
appears, that the latter are more suitable for the detection of audio fakes in our
dataset. We can only speculate about the reasons for this observation.

We assume that the features present in the SWT coefficients are not sufficient to
reliably distinguish between real and fake recordings. In particular, we hypoth-
esize that the absence of valuable characteristics in the high-frequency range,

49

EER

Generator Wide-24-sym7 WPT-Basic-sym9
min pu+to min pto
Full-Band MelGAN 0.183 0.190 £0.005 0.001 0.001 £0.001
Avocodo 0.196 0.209 £0.014 0.002 0.002 =£ 0.000
BigVGAN 0.203 0.209 £0.004 0.005 0.009 £0.003
HiFi-GAN 0.302 0.315 £0.009 0.001 0.001 £0.001
Large BigVGAN 0.243 0.253 £0.007 0.074 0.098 £0.017
MelGAN 0.234 0.239 £0.004 0.009 0.013 £0.002
Multi-Band MelGAN 0.267 0.273 £0.009 0.007 0.010 £0.002
Parallel WaveGAN 0.170 0.181 £0.008 0.001 0.001 +£0.001
WaveGlow 0.156 0.170 £0.008 0.001 0.001 £0.001

Multi-Band MelGAN (JSUT) 0.394 0.476 £0.073 0.187 0.216 +0.021
Parallel WaveGAN (JSUT) 0.346 0.533 £0.149 0.301 0.313 £0.014

Table 3.8: Recognition rates for each generator available in the extended WaveFake
dataset. Wide-24-sym?7 represents our best performing model processing SWT coeffi-
cients and WPT-Basic-sym9 our best performing model processing DWPT coefficients.

which are solely due to the limited frequency resolution of the SWT, makes it
difficult to recognize a fingerprint. The SWT analyzes the upper half of the
frequency spectrum once with the wavelet filter returning the first level wavelet
coefficients. These coefficients are not further processed. Hence, the majority
of high-frequency components of a signal are described by only one vector of
wavelet coefficients. The DWPT, on the other hand, recursively filters all coef-
ficients of the previous level. Given some level L, this results in 2% coefficient
vectors that analyze 2% evenly spaced frequency bands. Half of the coefficient
vectors, precisely 2¢71, thus describe the upper half of the frequency spectrum.
Therefore, the DWPT coefficients provide additional valuable features that are
likely to assist a CNN in the recognition of a fingerprint.

Table 3.8 lists the recognition rates for each generator model available in the
extended WaveFake dataset. We selected two of our best performing models,
one processing SWT coefficients, namely Wide-24 on sym?7, and one processing
DWPT coefficients, namely WPT-Basic on sym9. It is particularly noticeable
that the recognition rates on another reference dataset, such as JSUT, are sig-
nificantly worse, especially for the WPT-Basic model. A different reference set
contains recordings from a different setting usually with a different speaker, lan-
guage, and recording equipment. It is possible that the fingerprint of a GAN on
a different reference set differs significantly from the fingerprint, that the model
was intended to learn. Against this, however, the evaluation of the DCNN did
not yield such results [8]. Therefore, we have to assume that our models are
overfitting to the LJSpeech reference set.

50

Network Input Parameters

Wide-16 any 344 574
Wide-19 any 112526
Wide-24 any 946 526
Wide-32 any 639 838

. DWPT-symb5 487314
WPT-Basic ywpp_coifs 495 506
DWPT-symb 65122

WPT-Bottle pywpm coifs 73314
STEFT 239015

DWPT-dbb 239015

DCNN DWPT-symb 239015
DWPT-coif8 248 347

STEFT —

LCNN DWPT-symb 3312450
AST STEFT 85256 450

DWPT-symb 85256 450

Table 3.9: Number of learnable parameters for the examined models. Numbers for
the DCNN, LCNN and AST models are taken from Table 9 in [8].

In general, there are similarities in the recognition rates between the two mod-
els. It is noteworthy, that the WPT-Basic model only achieved lower recognition
rates on Large BigVGAN samples compared to all other recognition rates. Espe-
cially the recognition rates for BigVGAN and Avocodo remained equal to other
generators, which underlines the ability to detect novel generative models.

When evaluating the performance of different deep learning models, it is also
useful to compare their computational complexity. Table 3.9 lists the number of
learnable parameters of the different models. Our models have a large number of
convolutional layers compared to the other models. However, they do not have a
large number of parameters, which underlines the benefit of the residual learning
framework employing identity mappings. The overall performance of CNN-
based models in combination with their comparatively low number of parameters
speaks for their well-known efficiency. The enormous number of parameters in
the AST is not unusual for transformer models, but shows that equally good
results can be achieved with significantly fewer parameters.

The remaining paragraphs are dedicated to a discussion of future work, including
improvements to the proposed models. It is first and foremost important to ac-
knowledge the possibility of better recognition rates when using SWT inputs by
employing different CNN architectures. While residual blocks generally seemed

o1

to fit well, perhaps not all layers should consist of residual blocks. Because of
the shape of the SWT coefficients, the first convolutional layers are required to
substantially reduce the time dimension. While we mainly used strided convo-
lutions for this, other techniques may be more suitable. The Max-Feature-Maps
[22] of the LCNN could be a good start for further investigations.

In addition, the overfitting to the reference set of our models must be reduced.
This could potentially be achieved by introducing dropout [37] layers. Further-
more, a different preprocessing could improve the training progress. We already
experimented with omitting the log-transform step, which increased recognition
rates on the trained detector but resulted in overall worse generalization (see
appendix B). A proven method to improve generalization is dataset augmen-
tation [10, Chapter 7.4]. In regard to audio data, one may consider adding
noise, filters, or pitch variations. Beyond that, a multi-speaker dataset may also
enhance the overall generalization capabilities to unseen inputs.

A particularly interesting direction of further investigation of the SWT is its
combination with the DWPT. We have already briefly mentioned this exten-
sion of the SWT in the theoretical part of this thesis. While it is described in
the literature [31, Chapter 6.6], there are currently no such implementations in
practice [24]. This combination could offer the best of both worlds, namely in-
variance to shifts in the input and a detailed analysis across the entire frequency
spectrum.

Lastly, the AST has not yet been examined using SWT inputs. This may be
worth considering in future work. Overall, the proposed options represent just
a few of the many avenues for future work in audio deepfake detection. As
the need for reliable detectors continues into the future, we can expect the
development of many innovative and exciting solutions.

92

Chapter 4

Conclusion

The first part of this thesis provided a theoretical background to wavelet trans-
forms and convolutional neural networks. The second part involved the design
and examination of neural networks for the detection of audio deepfakes. In-
spired by recent work, we were able to extract fingerprints of all generator
networks within our dataset using the stationary wavelet transform. A detailed
examination of the fingerprints revealed that these are also reflected in the co-
efficients of the SWT. However, as the fingerprints are mainly to be expected
in the high-frequency part of a signal, it may well be that the SWT is not the
most suitable method. This is due to the nature of the SWT, which does not
perform a detailed analysis of high-frequency components. Instead, the upper
half of the frequency spectrum is only analyzed once by the wavelet filter.

Nevertheless, we have built functional detectors based on convolutional neural
networks that process SWT coefficients. However, in comparison to other de-
tectors, they did not achieve the desired recognition rates. We suspect that this
is mainly due to the lack of high frequency detail in the SWT. In addition, the
shape of the SWT coeflicients was found to be unfavorable for two-dimensional
CNNs. The advantage of the SWT being invariant to small shifts in time does
not appear to show a notable positive impact.

In summary, we concluded that the coefficients of the discrete wavelet packet
transform are more suitable. First, because the DWPT captures more detailed
information from high-frequency components of a signal. This additional in-
formation is represented by additional coefficients in the output of the DWPT.
As hypothesized, these provide valuable features to a CNN-based detector for
audio deepfakes. Second, because the shape of the DWPT coefficients is better
suited for two-dimensional CNNs. The results of our experiments showed that
residual CNNs processing DWPT coefficients achieve better recognition rates
than residual CNNs processing an SWT input.

In general, the choice of a CNN-based detector is advantageous because they
can achieve good recognition rates with a relatively small number of parame-
ters. CNN-based detectors that process a signal transformed with the STFT or
DWPT currently achieve the most promising results. Nevertheless, it should be
acknowledged that other architectures, such as transformers, could potentially
become more effective detectors in the future.

As generative networks continue to evolve, there is also a growing interest in
enhancing the performance of detectors. This poses a great challenge for the
research community and a seemingly endless number of research opportunities.

93

Bibliography

1]

[12]

[13]

Cs231n convolutional neural networks for visual recognition - setting up
the data and the model. https://cs231n.github.io/neural-networks-2/.
Accessed: 2024-06-25.

Cs231n convolutional neural networks for visual recognition - transfer learn-
ing. https://cs231n.github.io/transfer-learning/. Accessed: 2024-06-25.

Taejun Bak, Junmo Lee, Hanbin Bae, Jinhyeok Yang, Jae-Sung Bae, and
Young-Sun Joo. Avocodo: Generative adversarial network for artifact-free
vocoder. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 12562-12570, 2023.

Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285, 2016.

Joel Frank and Lea Schonherr. Wavefake: A data set to facilitate audio
deepfake detection. arXiv preprint arXiv:2111.02813, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. arXiv preprint arXiv:1803.03635,
2018.

Konstantin Gasenzer and Moritz Wolter. Towards generalizing deep-audio
fake detection networks. Transactions on Machine Learning Research, 2024.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram
transformer. arXiv preprint arXiv:2104.01778, 2021.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. Advances in neural information processing systems, 27,
2014.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. Communications of the ACM, 63(11):139-144, 2020.

Matthew Groh, Ziv Epstein, Chaz Firestone, and Rosalind Picard. Deep-
fake detection by human crowds, machines, and machine-informed crowds.
Proceedings of the National Academy of Sciences, 119(1):e2110013119,
2022.

o4

[14]

[15]

[16]

[17]

[19]

[20]

[21]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770-778, 2016.

Keith Ito and Linda Johnson. The lj speech dataset. https://keithito.
com/LJ-Speech-Dataset/, 2017.

Jee-weon Jung, Seung-bin Kim, Hye-jin Shim, Ju-ho Kim, and Ha-Jin Yu.
Improved rawnet with feature map scaling for text-independent speaker
verification using raw waveforms. arXiv preprint arXiv:2004.00526, 2020.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aaron Oord, Sander
Dieleman, and Koray Kavukcuoglu. Efficient neural audio synthesis. In
International Conference on Machine Learning, pages 2410-2419. PMLR,
2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint
arXiw:1710.10196, 2017.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative ad-
versarial networks for efficient and high fidelity speech synthesis. Advances
in Neural Information Processing Systems, 33:17022-17033, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

Kundan Kumar, Rithesh Kumar, Thibault De Boissiere, Lucas Gestin,
Wei Zhen Teoh, Jose Sotelo, Alexandre De Brebisson, Yoshua Bengio, and
Aaron C Courville. Melgan: Generative adversarial networks for condi-

tional waveform synthesis. Advances in neural information processing sys-
tems, 32, 2019.

Galina Lavrentyeva, Sergey Novoselov, Egor Malykh, Alexander Kozlov,
Oleg Kudashev, and Vadim Shchemelinin. Audio replay attack detection
with deep learning frameworks. In Interspeech, pages 82-86, 2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541-551, 1989.

Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron
O’Leary. Pywavelets: A python package for wavelet analysis. Journal of
Open Source Software, 4(36):1237, 2019.

99

[25]

[26]

[27]

[28]

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh
Yoon. Bigvgan: A universal neural vocoder with large-scale training. arXiv
preprint arXiv:2206.04658, 2022.

Xuechen Liu, Xin Wang, Md Sahidullah, Jose Patino, Héctor Delgado,
Tomi Kinnunen, Massimiliano Todisco, Junichi Yamagishi, Nicholas Evans,
Andreas Nautsch, et al. Asvspoof 2021: Towards spoofed and deepfake
speech detection in the wild. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2023.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlin-
earities improve neural network acoustic models. In Proc. icml, volume 30,
page 3. Atlanta, GA, 2013.

Kimberly T Mai, Sergi Bray, Toby Davies, and Lewis D Griffin. Warning;:
humans cannot reliably detect speech deepfakes. Plos one, 18(8):€0285333,
2023.

Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi.
Do gans leave artificial fingerprints? In 2019 IEEE conference on multi-
media information processing and retrieval (MIPR), pages 506-511. IEEE,
2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. 2017.

Donald B Percival and Andrew T Walden. Wavelet methods for time series
analysis, volume 4. Cambridge university press, 2000.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based
generative network for speech synthesis. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3617-3621. IEEE, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents.
arXiv preprint arXiw:2204.06125, 1(2):3, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115:211-252, 2015.

Md Sahidullah, Tomi Kinnunen, and Cemal Hanilgi. A comparison of fea-
tures for synthetic speech detection. 2015.

Ryosuke Sonobe, Shinnosuke Takamichi, and Hiroshi Saruwatari. Jsut cor-
pus: free large-scale japanese speech corpus for end-to-end speech synthesis.
arXiv preprint arXiv:1711.00354, 2017.

96

[37]

[42]

[43]

[44]

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929—
1958, 2014.

Massimiliano Todisco, Xin Wang, Ville Vestman, Md Sahidullah, Héctor
Delgado, Andreas Nautsch, Junichi Yamagishi, Nicholas Evans, Tomi Kin-
nunen, and Kong Aik Lee. Asvspoof 2019: Future horizons in spoofed and
fake audio detection. arXiv preprint arXiv:1904.05441, 2019.

Moritz Wolter, Felix Blanke, Jochen Garcke, and Charles Tapley Hoyt.
ptwt - the pytorch wavelet toolbox. Journal of Machine Learning Research,
25(80):1-7, 2024.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A
fast waveform generation model based on generative adversarial networks
with multi-resolution spectrogram. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6199-6203. IEEE, 2020.

Geng Yang, Shan Yang, Kai Liu, Peng Fang, Wei Chen, and Lei Xie. Multi-
band melgan: Faster waveform generation for high-quality text-to-speech.
In 2021 IEEE Spoken Language Technology Workshop (SLT), pages 492—
498. TEEE, 2021.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake images to gans:
Learning and analyzing gan fingerprints. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 7556—7566, 2019.

Tao Zhang. Deepfake generation and detection, a survey. Multimedia Tools
and Applications, 81(5):6259-6276, 2022.

o7

Appendices

98

Appendix A

Complete Evaluation Results

Wide-16
Accuracy [%)] Average EER
Network Input
max pwEto min nwto
SWT-haar 60.63 57.69 £2.54 0.386 0.417 £0.027
SWT-db3 67.58 64.75 £2.83 0.297 0.342 £0.028
SWT-db4 69.08 66.29 £2.12 0.299 0.331 £0.022
SWT-dbb 67.25 65.70 £1.33 0.327 0.341 £0.013
SWT-db7 66.64 65.51 £1.06 0.328 0.340 £0.013
SWT-db8 68.39 67.49 £1.19 0.322 0.334 £0.011
SWT-sym3 67.58 64.75 £2.83 0.297 0.342 £0.028
SWT-sym4 67.80 67.12 £0.71 0.283 0.327 £0.027
Wide-16 SWT-symb 69.21 67.38 £2.28 0.270 0.315 £ 0.040
SWT-sym7 71.56 68.74 £1.72 0.274 0.312 +0.025
SWT-sym8 67.95 67.20 £0.58 0.302 0.330 £0.019
SWT-sym9 68.64 67.91 £0.68 0.301 0.315 £0.012
SWT-coif3 67.97 66.12 £2.21 0.328 0.347 £0.014
SWT-coif4 69.12 67.27 £1.56 0.279 0.314 £0.024
SWT-coif5 68.62 67.17 £1.38 0.307 0.324 £0.010
SWT-coif7 69.31 67.25 £1.46 0.290 0.325 £0.021
SWT-coif§ 69.76 68.61 £0.87 0.312 0.322 £0.011
SWT-coif9 70.04 69.06 £1.17 0.286 0.294 +£0.005
GMM [6] LFCC - — 0.062 -
RawNet2 [16, 6] raw - — 0.363 -

Table A.1: Complete evaluation results of the Wide-16 residual CNN on the original
WaveFake dataset including JSUT (R1, R2, Al, A2). The second column presents the
different input types processed by the networks. Results highlighted in blue represent
the best values within their respective columns, ignoring the baseline models.

99

Accuracy [%]

Average EER

Network Input
max uwEto min uwto
SWT-haar 61.45 5885 +£2.41 0.377 0.403 £ 0.022
SWT-db3 69.22 66.46 £3.01 0.284 0.321 £0.025
SWT-db4 70.42 68.07 £1.98 0.284 0.309 +£0.018
SWT-db5 68.84 67.80 £0.95 0.306 0.317 +0.009
SWT-db7 68.84 67.60 £1.10 0.305 0.316 £0.010
SWT-db8 70.28 69.29 £1.27 0.300 0.310 +=0.011
SWT-sym3 69.22 66.46 +£3.01 0.284 0.321 +0.025
SWT-sym4 69.73 68.75 £1.02 0.274 0.307 £0.021
Wide-16 SWT-symb 70.41 68.92 £1.91 0.265 0.298 £ 0.030
SWT-sym7 72.59 70.50 £1.25 0.263 0.292 £0.019
SWT-sym8 69.51 69.10 £0.35 0.287 0.307 £0.015
SWT-sym9 69.67 69.38 £0.38 0.285 0.297 £0.010
SWT-coif3 69.76 68.03 £2.06 0.306 0.322 £0.013
SWT-coif4 70.64 69.17 £1.31 0.270 0.297 £0.019
SWT-coif5 70.30 68.95 £1.46 0.288 0.303 £ 0.009
SWT-coif7 70.75 69.04 £1.46 0.276 0.303 £0.016
SWT-coif8 70.90 69.90 £0.79 0.294 0.304 £ 0.007
SWT-coif9 7147 70.34 £1.36 0.274 0.282 £ 0.005
GMM [6, 8] LFCC — — 0.145 —

Table A.2: Complete evaluation results of the Wide-16 residual CNN on the ex-
tended WaveFake dataset including JSUT (R1, R2, A1, A2, B2). The second column
presents the different input types processed by the networks. Results highlighted in
blue represent the best values within their respective columns, ignoring the baseline

model.

60

Wide-19

Accuracy [%)]

Average EER

Network Input
max wEto min nwto
SWT-haar 59.01 55.29 £3.44 0.406 0.433 £0.022
SWT-db3 67.66 64.84 £3.24 0315 0.343 £0.021
SWT-db4 67.87 64.92 £3.22 0314 0.334 £0.019
SWT-db5 66.68 64.98 £1.33 0.324 0.341 £0.018
SWT-db7 68.35 65.37 £1.86 0.304 0.338 £0.021
SWT-db8 67.14 66.11 £1.11 0.325 0.346 £0.013
SWT-sym3 67.66 64.84 £3.24 0.315 0.343 £0.021
SWT-sym4 66.94 64.89 £1.34 0.312 0.344 £0.021
Wide-19 SWT-symb 68.25 65.37 £1.93 0.303 0.339 £0.023
SWT-sym7 66.87 66.27 £0.56 0.307 0.325 £ 0.019
SWT-sym8 68.12 66.50 £1.88 0.307 0.327 £ 0.016
SWT-sym9 68.10 67.56 £0.39 0.289 0.319 £0.017
SWT-coif3 67.70 65.75 £1.28 0.313 0.334 £0.019
SWT-coif4 67.16 65.85 £1.31 0.321 0.342 £0.015
SWT-coif5 67.63 66.00 £2.20 0.326 0.337 £ 0.010
SWT-coif7 69.07 67.43 £1.29 0.293 0.319 £0.017
SWT-coif8 67.53 66.54 £1.22 0.311 0.333 £0.015
SWT-coif9 69.00 68.06 £0.62 0.270 0.308 £ 0.022
GMM [6] LFCC — — 0.062 —
RawNet2 [16, 6] raw - - 0.363 -

Table A.3: Complete evaluation results of the Wide-19 residual CNN on the original
WaveFake dataset including JSUT (R1, R2, A1, A2). The second column presents the
different input types processed by the networks. Results highlighted in blue represent
the best values within their respective columns, ignoring the baseline models.

61

Accuracy [%]

Average EER

Network Input
max uwEto min uwto
SWT-haar 60.04 56.16 £3.72 0.405 0.423 £0.020
SWT-db3 69.17 66.18 £3.35 0.300 0.323 +£0.019
SWT-db4 69.52 66.42 £3.26 0.300 0.315 +£0.016
SWT-db5 67.83 66.77 £0.83 0.309 0.320 £0.012
SWT-db7 69.99 67.07 £1.84 0.288 0.318 £0.018
SWT-db8 69.00 67.95 £1.26 0.304 0.323 £0.011
SWT-sym3 69.17 66.18 £3.35 0.300 0.323 £0.019
SWT-sym4 68.36 66.43 £1.29 0.299 0.324 £0.015
Wide-19 SWT-symb 69.98 67.17 £1.71 0.288 0.319 £0.019
SWT-sym7 68.89 68.06 £0.72 0.294 0.306 £0.014
SWT-sym8 69.82 68.25 £1.58 0.294 0.308 £ 0.012
SWT-sym9 69.29 68.96 +£0.27 0.283 0.303 £ 0.011
SWT-coif3 69.27 67.30 £1.16 0.298 0.315 £0.014
SWT-coif4 69.08 67.65 £1.25 0.305 0.320 £0.012
SWT-coif5 69.26 67.63 £2.25 0.308 0.316 £0.010
SWT-coif7 70.56 69.21 £1.04 0.281 0.301 £0.013
SWT-coif8 68.89 68.22 £0.73 0.301 0.313 £ 0.009
SWT-coif9 70.71 69.67 £0.78 0.261 0.292 £ 0.018
GMM [6, 8] LFCC — — 0.145 —

Table A.4: Complete evaluation results of the Wide-19 residual CNN on the ex-
tended WaveFake dataset including JSUT (R1, R2, A1, A2, B2). The second column
presents the different input types processed by the networks. Results highlighted in
blue represent the best values within their respective columns, ignoring the baseline

model.

62

Wide-24

Network

Input

Accuracy [%)]

Average EER

max wEto

min nwEto

Wide-24

SWT-haar
SWT-db3
SWT-db4
SWT-db5b
SWT-db7
SWT-db8
SWT-sym3
SWT-sym4
SWT-symb
SWT-sym7
SWT-sym8
SWT-sym9
SWT-coif3
SWT-coif4
SWT-coif5
SWT-coif7
SWT-coif8
SWT-coif9

61.44 59.56 +1.14
70.06 67.49 £1.70
68.89 67.76 +£0.69
68.90 67.19 +1.36
68.58 68.13 +0.42
69.69 68.58 +0.86
70.06 6749 £1.70
68.93 67.91 £0.87
68.62 67.45 £1.16
72.43 70.24 £2.11
69.83 69.36 +0.34
69.68 68.37 £1.05
70.15 68.77 £0.90
69.59 69.05 +£0.31
72.02 69.89 +£1.78
70.14 69.95 +£0.16
72.05 70.18 £1.47
70.27 69.77 £0.53

0.363 0.403 £0.025
0.293 0.324 £0.027
0.285 0.320 £0.021
0.312 0.334 £0.014
0.309 0.324 £0.014
0.266 0.300 £ 0.022
0.293 0.324 £0.027
0.252 0.304 £0.032
0.281 0.328 +0.027
0.264 0.297 £0.030
0.292 0.301 £0.010
0.288 0.320 £0.019
0.266 0.293 £0.027
0.270 0.307 £0.024
0.271 0.296 £ 0.020
0.296 0.308 £0.012
0.271 0.296 £0.022
0.278 0.304 £0.018

GMM [6]
RawNet2 [16, 6]

LFCC
raw

0.062 —
0.363 —

Table A.5: Complete evaluation results of the Wide-24 residual CNN on the original
WaveFake dataset including JSUT (R1, R2, A1, A2). The second column presents the
different input types processed by the networks. Results highlighted in blue represent
the best values within their respective columns, ignoring the baseline models.

63

Accuracy [%]

Average EER

Network Input
max uwEto min uwto
SWT-haar 62.56 60.72 £1.15 0.358 0.390 =+ 0.020
SWT-db3 71.32 69.03 £1.62 0.281 0.305 +£0.021
SWT-db4 70.54 69.62 £0.65 0.273 0.298 +£0.015
SWT-db5 70.53 69.00 £1.12 0.292 0.310 +£0.012
SWT-db7 70.67 70.12 £0.48 0.288 0.300 +0.012
SWT-db8 71.21 70.49 £0.73 0.256 0.283 £0.017
SWT-sym3 71.32 69.03 £1.62 0.281 0.305 £ 0.021
SWT-sym4 70.64 69.58 £0.84 0.245 0.287 £0.025
Wide-24 SWT-symb 70.14 69.24 £0.80 0.272 0.306 £ 0.020
SWT-sym7 73.41 71.97 £1.42 0.256 0.277 £0.021
SWT-sym8 71.27 70.95 £0.26 0.276 0.284 £ 0.008
SWT-sym9 70.97 69.89 £0.77 0.276 0.299 £0.014
SWT-coif3 71.53 70.33 £0.85 0.257 0.279 £0.021
SWT-coif4 71.18 70.63 £0.36 0.259 0.289 £0.018
SWT-coif5 72.74 71.38 £1.23 0.263 0.280 £0.015
SWT-coif7 71.55 71.41 £0.16 0.280 0.289 =+ 0.008
SWT-coif8 73.03 71.51 £1.08 0.261 0.280 £0.016
SWT-coif9 71.53 71.09 £0.47 0.273 0.287 £0.011
GMM [6, 8] LFCC — — 0.145 —

Table A.6: Complete evaluation results of the Wide-24 residual CNN on the ex-
tended WaveFake dataset including JSUT (R1, R2, A1, A2, B2). The second column
presents the different input types processed by the networks. Results highlighted in
blue represent the best values within their respective columns, ignoring the baseline

model.

64

Wide-32

Network

Input

Accuracy [%)]

Average EER

max wEto

min nwEto

Wide-32

SWT-haar
SWT-db3
SWT-db4
SWT-db5b
SWT-db7
SWT-db8
SWT-sym3
SWT-sym4
SWT-symb
SWT-sym7
SWT-sym8
SWT-sym9
SWT-coif3
SWT-coif4
SWT-coif5
SWT-coif7
SWT-coif8
SWT-coif9

59.92 58.25 £1.21
67.97 65.74 £1.77
68.52 67.08 £1.30
67.37 66.51 +1.26
67.85 67.15 £0.43
68.01 66.99 +0.68
67.97 65.74 £1.77
68.03 66.53 +£1.27
67.28 66.35 £0.79
70.12 68.66 +1.38
69.26 68.14 +£0.94
70.29 68.51 +£1.09
67.94 66.83 £0.87
68.84 68.14 +0.64
69.96 68.81 +0.78
69.35 68.76 +0.69
68.95 68.09 £1.24
69.37 67.97 £1.18

0.372 0.402 £0.025
0.316 0.334 £0.018
0.276 0.312 £0.026
0.305 0.323 £0.016
0.314 0.322 £0.007
0.317 0.343 £0.019
0.316 0.334 £0.018
0.313 0.327 £0.012
0.289 0.330 £0.025
0.280 0.312 £0.028
0.296 0.325 £0.024
0.267 0.306 £ 0.024
0.298 0.324 £0.015
0.316 0.323 £0.005
0.293 0.300 £ 0.009
0.304 0.315 £0.010
0.305 0.318 £0.009
0.291 0.313 £0.018

GMM [6]
RawNet2 [16, 6]

LFCC

raw

0.062 —
0.363 —

Table A.7: Complete evaluation results of the Wide-32 residual CNN on the original
WaveFake dataset including JSUT (R1, R2, A1, A2). The second column presents the
different input types processed by the networks. Results highlighted in blue represent
the best values within their respective columns, ignoring the baseline models.

65

Accuracy [%]

Average EER

Network Input
max uwEto min uwto
SWT-haar 61.04 59.12 £1.35 0.374 0.394 £0.019
SWT-db3 69.53 67.50 £1.48 0.298 0.315 +£0.014
SWT-db4 70.28 68.89 £1.23 0.267 0.295 +£0.021
SWT-db5 68.90 68.18 £1.09 0.291 0.305 £0.013
SWT-db7 69.82 69.01 £0.49 0.297 0.302 £0.005
SWT-db8 69.92 69.00 £0.53 0.298 0.317 £0.015
SWT-sym3 69.53 67.50 £1.48 0.298 0.315 £0.014
SWT-sym4 69.51 68.19 £1.04 0.296 0.307 £ 0.009
Wide-32 SWT-symb 69.00 68.03 £0.80 0.280 0.311 £0.019
SWT-sym7 71.73 70.39 £1.32 0.265 0.292 £0.023
SWT-sym8 70.58 69.89 £0.77 0.284 0.303 £0.018
SWT-sym9 7149 70.00 £1.01 0.260 0.290 £ 0.019
SWT-coif3 69.00 68.55 £0.43 0.289 0.304 £ 0.009
SWT-coif4 70.56 69.84 £0.84 0.301 0.302 £ 0.000
SWT-coif5 71.36 70.40 £0.71 0.278 0.285 £ 0.007
SWT-coif7 70.97 70.43 £0.56 0.286 0.295 £ 0.007
SWT-coif8 70.59 69.93 £0.91 0.289 0.298 =+ 0.006
SWT-coif9 71.15 69.74 £1.02 0.276 0.295 £0.014
GMM [6, 8] LFCC — — 0.145 —

Table A.8: Complete evaluation results of the Wide-32 residual CNN on the ex-
tended WaveFake dataset including JSUT (R1, R2, A1, A2, B2). The second column
presents the different input types processed by the networks. Results highlighted in
blue represent the best values within their respective columns, ignoring the baseline

model.

66

WPT-Basic

Accuracy [%)] Average EER

Network Input -
max pEto min nwto

DWPT-haar 67.77 65.14 £2.08 0.297 0.327 +£0.028
DWPT-db2 80.57 79.48 £0.77 0.165 0.175 £0.009
DWPT-db3 88.00 84.99 +£1.79 0.108 0.114 +0.004
DWPT-db4 85.67 85.09 £0.40 0.077 0.084 +0.005
DWPT-db5 86.03 85.54 £0.40 0.071 0.073 £0.002
DWPT-db6 84.81 84.38 £0.49 0.078 0.081 +=0.002
DWPT-db7 84.75 84.23 £0.40 0.076 0.085 +0.008
DWPT-db8 85.12 83.96 £0.80 0.077 0.087 +0.006
DWPT-db9 85.68 85.23 £0.33 0.082 0.086 +0.003
DWPT-db10 85.26 84.75 £0.35 0.081 0.085 £0.003
DWPT-sym2 80.57 79.48 £0.77 0.165 0.175 £0.009
DWPT-sym3 88.00 84.99 £1.79 0.108 0.114 +0.004
DWPT-sym4 86.33 85.61 £0.53 0.081 0.085 £0.003
DWPT-sym5 86.02 85.90 £0.18 0.071 0.073 £0.001

WPT-Basic wpTigym6 86.54 8614 £0.33 0.067 0.072 +0.003
DWPT-sym7 86.36 85.86 +£0.57 0.055 0.067 = 0.008

DWPT-sym8 86.97 86.56 +£0.26 0.063 0.070 = 0.005

DWPT-sym9 87.01 86.77 £0.19 0.064 0.069 =+ 0.004
DWPT-syml0 86.97 86.65 +£0.27 0.060 0.065 = 0.005

DWPT-coif2 8579 85.61 +£0.17 0.069 0.081 =+ 0.008

DWPT-coif3 86.46 85.96 +£0.52 0.067 0.071 =+ 0.003

DWPT-coifd 86.70 86.25 £0.37 0.065 0.071 = 0.004

DWPT-coif5 86.76 86.50 +£0.25 0.075 0.080 = 0.006

DWPT-coif6 86.60 86.39 £0.20 0.075 0.088 = 0.008

DWPT-coif7 86.57 86.36 +£0.17 0.071 0.087 =+ 0.010

DWPT-coif§ 8640 86.13 +£0.22 0.074 0.087 =+ 0.007

DWPT-coifd 86.63 86.32 £0.20 0.073 0.090 = 0.012
DWPT-coifl0 86.79 86.46 +£0.25 0.073 0.086 = 0.008

STFT 99.88 97.98 +£3.18 0.001 0.099 -+ 0.178

DONN [y DWPT-db5 9636 9439 £145 0048 0083 £0.041
DWPT-sym5 97.60 95.57 +£2.58 0.032 0.066 + 0.035

DWPT-coifS 98.81 97.87 £0.92 0.026 0.121 =+ 0.089

STFT 99.88 98.33 +1.85 0.001 0.019 +0.018

LONN'35, 8] pwpmsyms 96.89 9534 +1.83 0.037 0.085 +0.053
AsT 0§ STFT 99.37 98.31 +£1.49 0.007 0.018 -+ 0.016
’ DWPT-sym5 93.63 91.98 £0.98 0.065 0.081 =+ 0.010

GMM [6] LFCC - — 0.062 -

Table A.9: Complete evaluation results of the WPT-Basic residual CNN on the
original WaveFake dataset including JSUT (R1, R2, A1, A2).
67

Accuracy [%] Average EER

Network Input
max pEto min nwto

DWPT-haar 65.84 63.32 £1.94 0.309 0.339 £0.028
DWPT-db2 78.27 76.63 £1.34 0.172 0.187 £0.014
DWPT-db3 86.66 85.13 £1.16 0.100 0.107 £0.005
DWPT-db4 87.89 86.48 £1.09 0.070 0.076 £ 0.007
DWPT-db5 88.10 87.04 £0.82 0.064 0.065 +0.001
DWPT-db6 86.34 85.50 £0.71 0.072 0.073 £0.002
DWPT-db7 86.00 85.12 £0.52 0.073 0.079 £ 0.006
DWPT-db8 86.68 85.26 £0.86 0.072 0.078 £0.004
DWPT-db9 87.21 86.70 £0.48 0.073 0.075 £0.001
DWPT-db10 86.79 86.43 £0.37 0.070 0.073 £0.002
DWPT-sym2 78.27 76.63 £1.34 0.172 0.187 £0.014
DWPT-sym3 86.66 85.13 £1.16 0.100 0.107 £0.005
DWPT-sym4 88.15 86.61 £1.15 0.071 0.077 £0.005
DWPT-sym5 87.12 86.58 £0.33 0.061 0.066 £ 0.003

WPT-Basic hwpTigym6é 88.14 8677 079 0059 0.066 +0.005
DWPT-sym7 88.48 87.17 £0.95 0.050 0.058 = 0.006

DWPT-sym8 89.11 87.60 £1.01 0.057 0.060 = 0.002

DWPT-sym9 88.83 87.68 £0.79 0.056 0.060 = 0.004
DWPT-syml0 88.17 87.08 £0.82 0.053 0.059 = 0.004

DWPT-coif2 87.24 86.53 £0.73 0.065 0.074 =+ 0.007

DWPT-coif3 87.60 86.85 £0.66 0.060 0.066 % 0.004

DWPT-coif4 88.35 87.52 £0.73 0.058 0.062 = 0.002

DWPT-coif5 88.37 87.64 £0.46 0.066 0.069 =+ 0.004

DWPT-coif6 88.52 87.85 £0.59 0.065 0.074 =+ 0.005

DWPT-coif7 ~ 88.17 87.36 £0.58 0.064 0.075 = 0.008

DWPT-coifS 88.42 87.45 £0.71 0.065 0.074 +0.005

DWPT-coifd 88.32 87.43 £0.57 0.065 0.078 = 0.009

DWPT-coifl0 88.53 87.56 £0.59 0.065 0.075 = 0.006

STFT 96.46 91.72 £2.94 0.036 0.159 =+ 0.150

DONN [g DWPT-db5 9688 9465 +£185 0048 0.082 40,042
DWPT-sym5 97.70 95.25 +£3.09 0.031 0.069 +0.036

DWPT-coif§ 98.72 97.39 £1.80 0.026 0.079 =+ 0.047

STFT 91.65 79.21 +£16.55 0.083 0.169 =+ 0.101

LONN[35, 8] yWpTsymp 9746 9012 +6.44 0.067 0.108 +0.042
AST 0.8 STFT 90.98 87.10 £2.54 0.089 0.122 +0.021
’ DWPT-sym5 93.49 91.25 £1.38 0.065 0.087 =+ 0.013

GMM [6,8] LFCC - — 0.145 -

Table A.10: Complete evaluation results of the WPT-Basic residual CNN on the
extended WaveFake dataset including JSUT (R1, R2, A1, A2, B2).

68

WPT-Bottle

Accuracy [%)] Average EER

Network Input -
max pEto min nwto

DWPT-haar 55.80 54.74 £1.40 0.432 0.450 +£0.018
DWPT-db2 77.53 7543 £1.91 0.211 0.225 +£0.023
DWPT-db3 82.14 80.03 £1.37 0.128 0.136 +0.006
DWPT-db4 83.85 82.32 £0.99 0.104 0.108 £0.003
DWPT-db5 83.91 82.61 £1.12 0.096 0.103 £0.007
DWPT-db6 83.42 82.57 £0.80 0.090 0.107 £0.011
DWPT-db7 83.81 82.78 £0.95 0.100 0.112 +=0.009
DWPT-db8 83.85 83.04 £0.74 0.092 0.110 £0.013
DWPT-db9 84.40 83.87 £0.61 0.097 0.114 +£0.016
DWPT-db10 83.91 83.46 £0.49 0.105 0.118 +0.012
DWPT-sym2 77.53 75.43 £1.91 0.211 0.225 +£0.023
DWPT-sym3 82.14 80.03 £1.37 0.128 0.136 +0.006
DWPT-sym4 85.14 83.70 £0.95 0.096 0.102 +0.004
DWPT-symb5 85.36 84.35 £1.09 0.082 0.093 £0.011

WPT-Bottle pwprgyme 8556 8478 £0.69 0.071 0.083 +0.007
DWPT-sym7 85.54 85.00 £040 0.067 0.088 = 0.016

DWPT-sym8 8644 86.19 +0.18 0.064 0.084 +0.014

DWPT-sym9 89.20 87.44 £1.07 0.078 0.085 = 0.008
DWPT-syml0 8648 86.13 £0.28 0.074 0.086 = 0.009

DWPT-coif2 8454 8416 £0.35 0.086 0.095 = 0.005

DWPT-coif3 8549 84.88 £0.60 0.078 0.094 +0.011

DWPT-coif4 85.85 85.37 £0.37 0.090 0.104 +0.011

DWPT-coif5 86.01 85.60 £0.38 0.095 0.107 = 0.008

DWPT-coif6 88.37 8647 £1.10 0.095 0.109 % 0.011

DWPT-coif7 ~ 83.05 86.62 £1.08 0.094 0.106 +0.007

DWPT-coifS ~ 83.97 86.68 £1.36 0.099 0.106 +0.007

DWPT-coif) 87.80 86.46 +£0.88 0.099 0.110 = 0.008
DWPT-coifl0 87.95 86.09 +1.15 0.106 0.112 -+ 0.004

STFT 99.88 97.98 £3.18 0.001 0.099 +0.178

poNn g DWPT-dbS 9636 943 £145 0048 0.083 £0.041
DWPT-sym5 97.60 95.57 £258 0.032 0.066 = 0.035

DWPT-coif8 ~ 98.81 97.87 £0.92 0.026 0.121 +0.089

STFT 99.88 9833 £1.85 0.001 0.019 +0.018

LONN'35, 8] pwpmsyms 96.89 9534 +1.83 0.037 0.085 +0.053
asTo. STFT 99.37 98.31 £149 0.007 0.018 +0.016
! DWPT-sym5 93.63 91.98 £0.98 0.065 0.081 = 0.010

GMM [6] LFCC - —0.062 -

Table A.11: Complete evaluation results of the WPT-Bottle residual CNN on the
original WaveFake dataset including JSUT (R1, R2, A1, A2)
69

Accuracy [%] Average EER

Network Input
max pEto min nwto

DWPT-haar 55.24 5431 £1.36 0.437 0.453 £0.018
DWPT-db2 76.88 74.10 £2.63 0.212 0.237 £0.029
DWPT-db3 83.93 8218 £1.08 0.120 0.127 £0.006
DWPT-db4 86.50 84.58 £1.44 0.089 0.096 +0.004
DWPT-db5 86.80 85.13 £1.04 0.083 0.089 £ 0.005
DWPT-db6 86.14 84.89 £0.78 0.084 0.092 +£0.006
DWPT-db7 85.68 84.73 £0.84 0.088 0.097 £0.005
DWPT-db8 86.49 85.57 £0.75 0.079 0.092 £0.010
DWPT-db9 87.17 86.26 £0.75 0.085 0.095 £0.010
DWPT-db10 86.90 86.09 £0.73 0.087 0.096 +0.008
DWPT-sym2 76.88 74.10 £2.63 0.212 0.237 £0.029
DWPT-sym3 83.93 8218 £1.08 0.120 0.127 £ 0.006
DWPT-sym4 87.54 85.35 £1.35 0.082 0.094 +0.007
DWPT-sym5 87.15 86.06 £1.26 0.074 0.083 £0.007

WPT-Bottle hwprgym6 88.03 86.16 £ 1.52 0072 0.076 +0.004
DWPT-sym7 87.92 86.90 +0.86 0.058 0.077 +0.012

DWPT-sym8 83.70 8775 + 1.0l 0.062 0.072 + 0.007

DWPT-sym9 90.69 88.72 +1.33 0.067 0.073 +0.005
DWPT-syml0 88.39 87.35 +1.05 0.071 0.075 +0.005

DWPT-coif2 86.88 86.07 +0.86 0.078 0.086 + 0.006

DWPT-coif3 ~ 87.68 86.61 £1.02 0.078 0.083 +0.005

DWPT-coifd 87.91 87.25 £0.90 0.074 0.087 +0.008

DWPT-coif5 ~ 83.32 87.39 +1.13 0.078 0.089 +0.007

DWPT-coif6 90.39 88.72 +£0.97 0.077 0.088 = 0.009

DWPT-coif7 ~ 90.01 8873 £0.92 0.077 0.086 = 0.005

DWPT-coif8 ~ 90.72 89.07 £1.00 0.077 0.085 +0.007

DWPT-coif) 90.06 8852 +1.04 0.079 0.089 + 0.008

DWPT-coifl0 90.04 8846 +0.91 0084 0.090 + 0.004

STFT 9646 9172 +2.94 0036 0.159 +0.150

peny (g DWPT-bs 9688 LG5 185 0048 0082 +0.042
DWPT-sym5 97.70 95.25 +3.09 0.031 0.069 + 0.036

DWPT-coif8 98.72 97.39 +1.80 0.026 0.079 + 0.047

STFT 91.65 79.21 £16.55 0.083 0.169 +0.101

LONN[35, 8] yWpTsymp 9746 9012 +6.44 0.067 0.108 +0.042
asT 0.5 STFT 90.98 87.10 £2.54 0089 0.122 +0.021
’ DWPT-sym5 9349 91.25 +1.38 0.065 0.087 +0.013

GMM [6,8] LFCC - 0145 _

Table A.12: Complete evaluation results of the WPT-Bottle residual CNN on the
extended WaveFake dataset including JSUT (R1, R2, Al, A2, B2)

70

Appendix B

No log-transform

The following Table shows the evaluation results of the Wide-24 model process-
ing SWT coefficients computed by the sym7 wavelet. It provides a comparison
between two different training configurations, namely one with and one with-
out the log-transform preprocessing step. The model without log-transformed
coefficients achieves high recognition rates on the trained generator (Full-Band
MelGAN) and its successors. However it does not generalize to the other gen-

erators.
EER

Generator With log-transform Without log-transform

min pEto min nto
Full-Band MelGAN 0.183 0.190 £0.005 0.030 0.043 £0.010
Avocodo 0.196 0.209 £0.014 0.271 0.334 £0.036
BigVGAN 0.203 0.209 £0.004 0.559 0.609 +0.032
HiFi-GAN 0.302 0.315 £0.009 0.441 0.457 £0.011
Large BigVGAN 0.243 0.253 +£0.007 0.448 0.461 £0.011
MelGAN 0.234 0.239 £0.004 0.147 0.179 £0.031
Multi-Band MelGAN 0.267 0.273 £0.009 0.102 0.114 £0.012
Parallel WaveGAN 0.170 0.181 +£0.008 0.512 0.586 £ 0.051
WaveGlow 0.156 0.170 £0.008 0.190 0.201 +0.008
Multi-Band MelGAN (JSUT) 0.394 0.476 £0.073 0.502 0.544 +0.043
Parallel WaveGAN (JSUT) 0.346 0.533 £0.149 0.464 0.595 £0.093

Table B.1: Evaluation of Wide-24-sym7 showing the recognition rates for each gen-
erator available in the extended WaveFake dataset.

71

Declaration of Authorship

I hereby confirm that I have written this thesis myself in compliance with the
rules of good research practice, that I have not used any sources other than
those indicated and that I have marked all citations as such.

Bonn, 27.06.2024

72

