001029011 001__ 1029011
001029011 005__ 20250204113913.0
001029011 0247_ $$2doi$$a10.1116/6.0003225
001029011 0247_ $$2ISSN$$a0734-2101
001029011 0247_ $$2ISSN$$a1520-8559
001029011 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04929
001029011 0247_ $$2WOS$$aWOS:001153140000005
001029011 037__ $$aFZJ-2024-04929
001029011 041__ $$aEnglish
001029011 082__ $$a530
001029011 1001_ $$0P:(DE-Juel1)176471$$aFreter, Lars$$b0
001029011 245__ $$aComposition dependence of intrinsic surface states and Fermi-level pinning at ternary Al x Ga1− x N m -plane surfaces
001029011 260__ $$aNew York, NY$$bInst.$$c2024
001029011 3367_ $$2DRIVER$$aarticle
001029011 3367_ $$2DataCite$$aOutput Types/Journal article
001029011 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1722349173_30926
001029011 3367_ $$2BibTeX$$aARTICLE
001029011 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029011 3367_ $$00$$2EndNote$$aJournal Article
001029011 520__ $$aGrowth on nonpolar group III-nitride semiconductor surfaces has been suggested to be a remedy for avoiding detrimental polarization effects. However, the presence of intrinsic surface states within the fundamental bandgap at nonpolar surfaces leads to a Fermi-level pinning during growth, affecting the incorporation of dopants and impurities. This is further complicated by the use of ternary, e.g., Al(x)Ga(1-x)N layers in device structures. In order to quantify the Fermi-level pinning on ternary group III nitride nonpolar growth surface, the energy position of the group III-derived empty dangling bond surface state at nonpolar Al(x)Ga(1-x)N (10-10) surfaces is determined as a function of the Al concentration using cross-sectional scanning tunneling microscopy and spectroscopy. The measurements show that the minimum energy of the empty dangling bond state shifts linearly toward midgap for increasing Al concentration with a slope of  ~5 meV/%. These experimental findings are supported by complementary density functional theory calculations.
001029011 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001029011 536__ $$0G:(GEPRIS)398305088$$aDFG project 398305088 - Grundlegende Eigenschaften nicht-polarer Oberflächen von ternären Gruppe-III-Nitrid-Verbindungshalbleitern (398305088)$$c398305088$$x1
001029011 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029011 7001_ $$00000-0002-4883-3728$$aLymperakis, Liverios$$b1
001029011 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b2
001029011 7001_ $$00000-0001-6603-0008$$aEisele, Holger$$b3
001029011 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b4
001029011 7001_ $$00000-0001-8485-166X$$aLiu, Jianxun$$b5
001029011 7001_ $$0P:(DE-HGF)0$$aSun, Qian$$b6
001029011 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b7
001029011 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b8$$eCorresponding author
001029011 773__ $$0PERI:(DE-600)1475424-1$$a10.1116/6.0003225$$gVol. 42, no. 2, p. 023202$$n2$$p023202$$tJournal of vacuum science & technology / A$$v42$$x0734-2101$$y2024
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.pdf$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/Composition_dependence.pdf$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/Composition_dependence.gif?subformat=icon$$xicon$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/Composition_dependence.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/Composition_dependence.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/Composition_dependence.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.gif?subformat=icon$$xicon$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029011 8564_ $$uhttps://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029011 8767_ $$d2024-07-19$$eHybrid-OA$$jPublish and Read
001029011 909CO $$ooai:juser.fz-juelich.de:1029011$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001029011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b2$$kFZJ
001029011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b4$$kFZJ
001029011 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Key Laboratory of Nano-devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123, China$$b6
001029011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
001029011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b8$$kFZJ
001029011 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001029011 9141_ $$y2024
001029011 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029011 915pc $$0PC:(DE-HGF)0102$$2APC$$aTIB: AIP Publishing 2021
001029011 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001029011 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-24
001029011 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029011 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001029011 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029011 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001029011 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VAC SCI TECHNOL A : 2022$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001029011 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001029011 920__ $$lyes
001029011 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001029011 980__ $$ajournal
001029011 980__ $$aVDB
001029011 980__ $$aUNRESTRICTED
001029011 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001029011 980__ $$aAPC
001029011 9801_ $$aAPC
001029011 9801_ $$aFullTexts