Home > Publications database > Composition dependence of intrinsic surface states and Fermi-level pinning at ternary Al x Ga1− x N m -plane surfaces > print |
001 | 1029011 | ||
005 | 20250204113913.0 | ||
024 | 7 | _ | |a 10.1116/6.0003225 |2 doi |
024 | 7 | _ | |a 0734-2101 |2 ISSN |
024 | 7 | _ | |a 1520-8559 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-04929 |2 datacite_doi |
024 | 7 | _ | |a WOS:001153140000005 |2 WOS |
037 | _ | _ | |a FZJ-2024-04929 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Freter, Lars |0 P:(DE-Juel1)176471 |b 0 |
245 | _ | _ | |a Composition dependence of intrinsic surface states and Fermi-level pinning at ternary Al x Ga1− x N m -plane surfaces |
260 | _ | _ | |a New York, NY |c 2024 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1722349173_30926 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Growth on nonpolar group III-nitride semiconductor surfaces has been suggested to be a remedy for avoiding detrimental polarization effects. However, the presence of intrinsic surface states within the fundamental bandgap at nonpolar surfaces leads to a Fermi-level pinning during growth, affecting the incorporation of dopants and impurities. This is further complicated by the use of ternary, e.g., Al(x)Ga(1-x)N layers in device structures. In order to quantify the Fermi-level pinning on ternary group III nitride nonpolar growth surface, the energy position of the group III-derived empty dangling bond surface state at nonpolar Al(x)Ga(1-x)N (10-10) surfaces is determined as a function of the Al concentration using cross-sectional scanning tunneling microscopy and spectroscopy. The measurements show that the minimum energy of the empty dangling bond state shifts linearly toward midgap for increasing Al concentration with a slope of ~5 meV/%. These experimental findings are supported by complementary density functional theory calculations. |
536 | _ | _ | |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535) |0 G:(DE-HGF)POF4-5353 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 398305088 - Grundlegende Eigenschaften nicht-polarer Oberflächen von ternären Gruppe-III-Nitrid-Verbindungshalbleitern (398305088) |0 G:(GEPRIS)398305088 |c 398305088 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lymperakis, Liverios |0 0000-0002-4883-3728 |b 1 |
700 | 1 | _ | |a Schnedler, Michael |0 P:(DE-Juel1)143949 |b 2 |
700 | 1 | _ | |a Eisele, Holger |0 0000-0001-6603-0008 |b 3 |
700 | 1 | _ | |a Jin, Lei |0 P:(DE-Juel1)145711 |b 4 |
700 | 1 | _ | |a Liu, Jianxun |0 0000-0001-8485-166X |b 5 |
700 | 1 | _ | |a Sun, Qian |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 7 |
700 | 1 | _ | |a Ebert, Philipp |0 P:(DE-Juel1)130627 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1116/6.0003225 |g Vol. 42, no. 2, p. 023202 |0 PERI:(DE-600)1475424-1 |n 2 |p 023202 |t Journal of vacuum science & technology / A |v 42 |y 2024 |x 0734-2101 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1029011/files/Composition_dependence.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1029011/files/Composition_dependence.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1029011/files/Composition_dependence.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1029011/files/Composition_dependence.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1029011/files/Composition_dependence.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1029011/files/023202_1_6.0003225.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1029011 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)143949 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145711 |
910 | 1 | _ | |a Key Laboratory of Nano-devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123, China |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130627 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5353 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a TIB: AIP Publishing 2021 |0 PC:(DE-HGF)0102 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-08-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-10 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J VAC SCI TECHNOL A : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-10 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|