

View

Online


Export
Citation

RESEARCH ARTICLE |  JULY 02 2024

Patterns and correlations in European electricity prices 
Special Collection: Data-Driven Models and Analysis of Complex Systems

Julius Trebbien  ; Anton Tausendfreund  ; Leonardo Rydin Gorjão  ; Dirk Witthaut  

Chaos 34, 073108 (2024)
https://doi.org/10.1063/5.0201734

 17 D
ecem

ber 2024 12:43:52

https://pubs.aip.org/aip/cha/article/34/7/073108/3300674/Patterns-and-correlations-in-European-electricity
https://pubs.aip.org/aip/cha/article/34/7/073108/3300674/Patterns-and-correlations-in-European-electricity?pdfCoverIconEvent=cite
https://pubs.aip.org/cha/collection/13407/Data-Driven-Models-and-Analysis-of-Complex-Systems
javascript:;
https://orcid.org/0000-0001-9831-876X
javascript:;
https://orcid.org/0009-0001-9148-3188
javascript:;
https://orcid.org/0000-0001-5513-0580
javascript:;
https://orcid.org/0000-0002-3623-5341
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0201734&domain=pdf&date_stamp=2024-07-02
https://doi.org/10.1063/5.0201734
https://e-11492.adzerk.net/r?e=_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09YmFubmVyJnV0bV9jYW1wYWlnbj1IQV9DSEFfU1QrT3Blbitmb3IrU3Vic19QREZfMjAyNCJ9&s=EyOWuIc4kCaFocPzjHxSQcyuADg


Chaos ARTICLE pubs.aip.org/aip/cha

Patterns and correlations in European electricity
prices

Cite as: Chaos 34, 073108 (2024); doi: 10.1063/5.0201734

Submitted: 31 January 2024 · Accepted: 28May 2024 ·

Published Online: 2 July 2024 View Online Export Citation CrossMark

Julius Trebbien,1,2 Anton Tausendfreund,1,2 Leonardo Rydin Gorjão,3 and Dirk Witthaut1,2,a)

AFFILIATIONS

1Institute for Energy and Climate Research—Energy Systems Engineering (IEK-10), Forschungszentrum Jülich,
52428 Jülich, Germany
2Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany
3Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway

Note: This paper is part of the Focus Issue: Data-Driven Models and Analysis of Complex Systems.
a)Author to whom correspondence should be addressed: d.witthaut@fz-juelich.de

ABSTRACT

Electricity markets are central to the coordination of power generation and demand. The European power system is divided into several
bidding zones, each having an individual electricity market price. While individual price time series have been intensively studied in recent
years, spatiotemporal aspects have received little attention. This article provides a comprehensive data-centric analysis of the patterns and cor-
relations of the European day-ahead electricity prices between 2019 and 2023, characteristically abnormal due to the energy crisis in Europe.
We identify the dominant communities of bidding zones and show that spatial differences can be described with very few principal compo-
nents. Most bidding zones in Continental Europe were brought together during the energy crisis: Correlations increased, and the number
of relevant principal components decreased. Opposite effects occur in the Nordic countries and the Iberian Peninsula where correlations
decrease and communities fragment.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0201734

The European energy crisis, inextricably connected with the
Russian invasion of Ukraine, resulted in electricity price lev-
els never before seen. Europe’s dependence on Russian gas led
to soaring prices coupled with the uncertainty brought about
by the war. Remarkably, the various electricity markets of each
European country were affected in quite different, sometimes
unexpected ways. As a consequence, topics in energy markets
and energy security took center stage in the political discussion.
Electricity markets have always been a central topic in energy eco-
nomics, but the interactions and interdependencies of markets
received rather little attention. This article provides a data-centric
investigation of electricity prices in the various bidding zones in
Europe and quantifies similarities and differences.

I. INTRODUCTION

A reliable supply of electric power is crucial for almost all
aspects of our daily lives. Most economic activities as well as most

technical infrastructures are dependent on the robust and stable
operation of the electric power system, making it a uniquely crit-
ical infrastructure.1 Since a power grid cannot easily store energy
in itself, generation and demand must be balanced at all times.2 A
balanced system operates at a nominal frequency (commonly 50 or
60 Hz). Small deviations are corrected by the load-frequency control
system in real time,3,4 but most of the generation must be scheduled
beforehand in order to match the forecasted demand of all con-
sumers in the synchronous grid. In liberalized electricity markets,
this is achieved by trading on various electricity markets,5 wherein
electricity producers and consumers buy and sell generation capac-
ity. Apart from long-term contracts, the day-ahead spot markets
play a central role in fulfilling the power demands of the consumers
in the synchronous grid.6,7

The aggregation of generation and demand in an intercon-
nected synchronous grid can improve the stability and efficiency of
the grid for several reasons. First, long-distance transmission facil-
itates the balancing of variable renewable power sources.8 Second,
short-term power fluctuations average out, reducing the demand for
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real-time control and improving frequency stability.9,10 Finally, the
liberalization and integration of markets increases competition and,
thus, leads to lower costs.5 For example, the Continental European
(CE) synchronous area included a generation capacity of more than
600 GW and served more than 400 million customers as of 2021.11

Electricity trading in interconnected grids is limited by physi-
cal constraints. An overhead line can transmit only a certain amount
of electric power before stability is at risk.2,12 To reflect these limi-
tations—and to create a financial incentive to supply power across
countries—the European power system is divided into various bid-
ding zones, often corresponding to the respective countries. Every
bidding zone has its distinct electricity prices, reflecting the local
supply and demand.

Electricity spot market prices across all European bidding
zones have intricate statistical properties, featuring heavy tails and a
strong persistence.6 The complexity of the data reflects the inherent
complexities of each bidding zone. These comprise the balance of
renewable and non-renewable generation, the limitation of import-
ing or exporting electricity, and naturally the daily human activity
patterns. One element that highly influences the prices is the abil-
ity to sell or buy generation between adjacent bidding zones, be it
between countries or even within a country.

In this article, we provide a statistical analysis of the spatiotem-
poral properties of electricity price time series in Europe between
2019 and 2023 and the impacts of the European energy crisis.
Prices are coupled due to cross-border trading and common drivers,
i.e., similar temporal patterns of the demand. This gives rise to
strong correlations and intricate spatiotemporal patterns reflecting
the specific power demands of each bidding zone. Moreover, the
energy markets are inextricably coupled to the gas and oil markets
in Europe. Price changes in these, driven by either market eco-
nomics or political events, inadvertently affect electricity prices.13 In
fact, the European energy crisis related to the Russian invasion of
Ukraine strongly affected the electricity systems across Europe,13,14

but impacts differed from country to country. Hence, we observe
not just an overall increase in electricity prices but a comprehensive
modification of their correlations and spatiotemporal patterns.

The article is structured as follows. We provide a short review
of the structure and functioning of European electricity markets
in Sec. II. We then give an overview of the price time series and
their fundamental statistical properties in Sec. III, including a first
glimpse on the effect of the European energy crisis. Section IV
contains a detailed analysis of the spatial correlations of the elec-
tricity price time series. We then proceed to identify and investigate
the main spatiotemporal patterns of day-ahead electricity prices in
Sec. V. We conclude with a short discussion and outlook in Sec. VI.

II. BACKGROUND: ELECTRICITY MARKETS AND

PRICES

A. European electricity markets

In liberalized electricity markets, the balancing of power sys-
tems is mainly achieved by trading of generation and consumption
capacities. Each market participant must sell or buy the electricity
that they are going to inject or withdraw from the grid in a certain
time window.15 For instance, an operator of a photovoltaic power

plant, upon agreeing on a forward contract on the electricity spot
market, must deliver the exact amount of electricity that they sold in
any given hourly time window.

Market participants may buy and sell electricity either via
individual long-term contracts, commonly referred to as power
purchase agreements (PPAs), via over-the-counter (OTC) direct
contracts, or via trading on an electricity exchange. Given the vari-
ability in generation and consumption due to different factors, such
as changing weather, most market participants are dependent on
forecasts.16 Since forecasts become increasingly uncertain as the time
horizon extends from actual delivery, a variety of electricity mar-
kets including future, day-ahead, and intraday markets exist within
Europe. The spot markets are the main market for physical trading
of electricity and consist of the day-ahead and intraday markets.7,17,18

The European day-ahead markets generally trade in hourly blocks
for the 24 hours of the following day and close at 12:00 CET. Differ-
ent exchanges may adopt slightly different rules but mostly follow
the mentioned structure.19

Day-ahead trading is auction-based, i.e., the bids and offers of
all market participants are collected inside the order book until mar-
ket closure. Aggregating both offers and bids in volume for each
hour creates the respective supply and demand curves. The Mar-
ket Clearing Price (MCP) of the day-ahead market results from the
intersection between the supply and demand curve, which corre-
sponds to the highest price that finds a buyer.20,21 All bids and offers
that are consistent with the price are realized at the market clear-
ing price in the respective hour. Consequently, every offer below
the market price and every bid above the market price gets exe-
cuted exactly at the MCP, commonly referred to as “pay-as-cleared.”
All bids below and all offers above the market clearing price are
discarded.

The European electricity market is separated into bidding
zones to reflect regional market conditions and limited trans-
mission capacities. In principle, each bidding zone constitutes a
separate electricity market with a separate market clearing price.
Clearing the bidding zones individually ensures that generation
and load are balanced regionally, given the limited capacities for
long-distance transmission. Bidding zones are coupled to a lim-
ited extent as described below to enable exports and imports. In
Europe, most bidding zones correspond to countries, with some
countries sharing a bidding zone or being divided into several
inter-country bidding zones.22 For instance, Norway, Sweden, and
Italy are divided into various smaller bidding zones within each
country.

For the 12:00 day-ahead auction, the different bidding zones
are coupled through the Single Day-Ahead Coupling (SDAC) mech-
anism. The SDAC, implemented in northwest Europe in 2014 and
later expanded to most European bidding zones, integrates day-
ahead electricity markets across Europe. The mechanism enhances
market efficiency by pooling demand and supply across bidding
zones, breaking the confines of local markets with respect to trans-
mission capacity constraints between bidding zones.23

The aim of market coupling is to increase the efficiency of trad-
ing through increased liquidity and efficient utilization of all gen-
eration resources in Europe.24 In contrast, transmission capacities
within a bidding zone are not resolved and must be dealt with
afterward.12
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FIG. 1. Visualization of the merit-order principle. Generation is sorted according
to their estimated marginal cost. The load is approximated as independent of the
price. The price is set by the power plant with the highest marginal cost needed
to match the load. Typically, renewable generation has the lowest marginal cost
such that it is always included in the merit-order principle. Therefore, power plants
using fossil fuels, such as coal, gas, or oil power plants determine the price.

The SDAC employs the PCR EUPHEMIA algorithm for price
calculation and capacity allocation, completing these tasks for all
zones and hourly intervals of the next day.25 EUPHEMIA processes
inputs from Nominated Electricity Market Operators (NEMOs)
and Transmission System Operators (TSOs), encompassing order
books and network constraints (e.g., interconnector restrictions, line
losses, tariffs). The optimization algorithm maximizes social welfare
by considering consumer and supplier surplus alongside congestion
rent.26

We note that the actual generation may differ from the amount
that has been sold on an electricity market, for instance, due to fore-
casting errors. Various layers of control reserve are implemented
to balance the generation in real-time but are limited to small
imbalances.3 Most countries or bidding zones have energy reserve
markets to promote balancing schemes for small power imbalances,
but this is beyond the scope of the present article.

B. The merit-order principle

The temporal evolution of the electricity market price p(t) in
one bidding zone can roughly be understood from the merit-order
principle.27 In the short run, the demand for electricity D is largely
inelastic.28 In perfect competition, the demand is satisfied by gener-
ating units according to their marginal costs. All units with marginal
costs below the market price p can realize positive contribution mar-
gins and are, thus, “on,” all others are “off.” Hence, one can obtain
an approximate view of the market outcome by sorting all gener-
ating units according to their estimated marginal costs—the merit
order. The marginal cost of the last power plant entering the market
then corresponds to the market clearing price as illustrated in Fig. 1.

The merit-order principle can be formalized as follows. At
each point in time, the demand must equal the sum of intermittent
renewable generation (wind and solar) and dispatchable generation
such that

Gren(t) + Gd(p) = D(t). (1)

Here, Gd(p) is the supply curve of the dispatchable generation
according to the merit-order principle.27 Renewable generation and
demand are assumed to be independent of the market price p but

vary strongly in time. Solving Eq. (1) for the market price, thus,
yields

p(t) ≈ G−1
d [D(t) − Gren(t)], (2)

where G−1
d denotes the inverse function of the supply curve. Hence,

wind and solar generation and demand are essential factors that
determine the electricity market price.29

We emphasize that Eq. (2) provides only a rough estimate of the
actual market price as it neglects many other influencing factors.29

Conventional power plants, especially nuclear and lignite plants,
have limited flexibility such that any ramping or cycling induces
additional costs.30 Thus, in the short run, power plant operators may
choose a bidding price below their marginal costs. In the case of a
decreasing demand, the operators may bid at a lower price to remain
in the market. In the medium to long run, fuel prices evolve and
the set of dispatchable power plants changes, which also affects the
function Gd(p).

III. ELECTRICITY PRICES AND THE EUROPEAN

ENERGY CRISIS

In this section, we provide an overview of the spot market
prices across Europe and the impact of European electricity prices.
Our analysis is based on data from the European Network of Trans-
mission System Operators for Electricity (ENTSO-E).31 Further
details are given in the Appendix.

A. Electricity price time series

Before turning to spatiotemporal aspects, we review the essen-
tial aspects of price time series, focusing on a single bidding zone.
Figure 2 shows the electricity price in the DE-LU bidding zone
together with the load and renewable generation for one week. This
figure highlights the main driving factors of electricity spot market
prices as introduced in Sec. II B as well as typical recurring pat-
terns. The load has a pronounced daily and weekly pattern, being
substantially smaller during the night and on the weekend. The load
typically peaks in the early morning and the evening, and so do the
electricity prices. Solar power generation peaks at noon such that the
residual load D(t) − Gren(t) and the price p(t) assume a minimum.
During the week displayed in the figure, wind power is decreasing
such that we observe an overall increase in the electricity prices until
the weekend. The relation of electricity prices and the residual load
for European bidding zones has been investigated in Ref. 32 while
further influences have been discussed in Ref. 29. Electricity price
time series have intricate statistical properties including heavy tails
and a pronounced persistence as discussed in detail in Ref. 6.

The European electricity markets were strongly affected by the
European energy crisis of 2021 and 2022. Energy prices soared in
many regions in connection to the Russian invasion of Ukraine.14

Europe was particularly strongly affected due to the dependence on
Russian fossil fuels in many countries. Figure 3 shows the electric-
ity prices in the DE-LU bidding zone over a time period of several
years. We observe a strong increase in the electricity prices start-
ing at the end of 2021. While prices never exceeded 300 EUR/MWh
before the crisis, they regularly do during the crisis with peaks
above 800 EUR/MWh. Figure 3 also shows that it is generally not
possible to pinpoint the exact start of the European energy crisis.
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FIG. 2. Electricity prices and major driving factors. We show the time series for
(a) load, solar power, and wind power generation and (b) the day-ahead spot mar-
ket price in the DE-LU bidding zone for the week starting on 6 July 2020. Prices
generally increase with the residual load, i.e., the load minus the variable renew-
able generation, cf. Sec. II B. Data sources and processing are summarized in the
Appendix.

However, to be able to compare the data for the period before and
during the energy crisis, we have set the start of the crisis to 13
September 2021, the first week in which the weekly average price in
Europe was significantly higher (≥ 50 EUR/MWh) than the aver-
age price of the previous six months. Further effects of the energy
crisis have been discussed in the literature: The volatility of prices
increased strongly,33 and the likeliness of negative prices decreased
drastically.34

B. Differences between bidding zones

Electricity prices may differ considerably between the different
bidding zones. In this section, we compare and discuss the global
statistical features of respective price time series, before turning to
the spatiotemporal correlations and patterns in the following.

Figure 4(a) shows the average day-ahead spot market price
before the onset of the European electricity crisis. The lowest prices
are observed in the Nordics, especially in the Northern bidding
zones of Norway and Sweden, which is mostly due to the abun-
dance of water power. The marginal costs of water power plants
are typically very low such that electricity is offered at compara-
bly low prices. At the same time, population density and, thus,

FIG. 3. Electricity price time series from the German day-ahead market from
January 2019 to 2023. Data sources and processing are summarized in the
Appendix.

load are rather small, resulting in low overall prices. The highest
prices are observed in Italy, in particular, Sicily. Italy has a limited
amount of generation facilities leading to a small supply and, thus, to
higher prices. In fact, Italy imports a substantial amount of electric-
ity from neighboring countries. For instance, in 2021, Italy imported
a 46.6 TWh of electricity, while it exported only 3.8 TWh.35

The impact of the European electricity crisis is illustrated in
Figs. 4(b) and 4(c). We observe that the average price increases
strongly in many bidding zones up to a factor of almost six. Almost
no change is observed in the Northern bidding zones of Norway and
Sweden, which can again be attributed to the dominant role of water
power, which was not affected by increasing fuel prices. Further-
more, the increase is rather modest in Finland, Southern Sweden,
Poland, and the Iberian Peninsula. The electricity system in these
bidding zones does not rely strongly on natural gas imports from
Russia for different reasons. Power generation in Sweden and Fin-
land mainly relies on nuclear power, while domestic coal and lignite
are dominant in Poland. Spain and Portugal import almost no nat-
ural gas from Russia but rely on liquefied natural gas (LNG) from
other sources instead.35

The strongest increase in prices is observed in Southern Nor-
way and France. This is surprising because power generation in these
bidding zones does not rely strongly on Russian natural gas—but on
water power in Norway and nuclear power in France.35

These unexpected findings can be connected to two effects that
occurred simultaneously but independently of the Russian invasion
of Ukraine. First, a large number of French nuclear power plants
had to go into revision. Figure 5(a) shows the reported unavail-
ability of nuclear generation capacity. There is a strong seasonal
pattern as revisions are preferably planned during the summer
months. Comparing different years, we find that the unavailabil-
ity reached previously unknown values of more than 36 GW during
summer 2022. Similarly, the unavailability in the winter 2021/2022
was higher than in preceding winters by several GW. We conclude
that the price increase in the French bidding zone can be attributed
at least partially to this effect.

The strong increase in Southern Norway occurs at the time
when the NordLink interconnection to Germany was put into
commercial operation in 2021.36 This high-voltage DC connection
has a transmission capacity of 1.4 GW, the actual power exchange
being shown in Fig. 5(b). NordLink enables direct electricity trad-
ing between the bidding zones in Germany (DE-LU) and Norway
(NO2), which typically leads to an alignment of the respective day-
ahead prices. Given the comparably small size of the NO2 bidding
zone, we expect a much stronger effect than in the German bidding
zone. Indeed, we see that the average price pduring shown in Fig. 4(b)
is very similar.

IV. CORRELATIONS AND COMMUNITIES

In this section, we turn to the spatiotemporal aspects of elec-
tricity prices in Europe. We first quantify correlations of price time
series and identify communities in the European markets.

Correlations emerge via two different mechanisms: common
driving factors and mutual interactions. Common driving factors
affect both the demand and supply curves in the individual bidding
zones. The demand shows pronounced daily and weekly patterns,
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FIG. 4. Average electricity price and the impact of the European electricity crisis. (a) and (b) The colormap shows the average day-ahead spot market price for each bidding
zone before and during the European electricity crisis. (c) The colormap shows the ratio of the average price during and before the crisis. In some bidding zones, the prices
increase up to a factor of almost six. Data sources are summarized in the Appendix.

which are similar in most bidding zones.37,38 The availability of
renewable power also shows regular patterns, in particular, sea-
sonal patterns39 and daily patterns for solar power. Furthermore, the
actual weather is strongly correlated on the synoptic scale of around

FIG. 5. Features affecting electricity supply and trading in 2021/2022. (a) The
NordLink interconnector between Germany and Norway was put into commercial
operation in 2021.36 The figure shows the physical exchange between Norway
(NO2) and Germany (DE-LU) as a function of time, averaged over one week.
Positive values correspond to a flow from Norway to Germany. (b) The reported
unavailability of nuclear power plants in France was larger than in previous years.
Data sources are summarized in the Appendix.

1000 km. As a consequence, electricity price time series in different
bidding zones show similar recurring patterns and similar reactions
to the weather, albeit at different magnitudes.

Cross-border electricity trading introduces an interaction
between neighboring bidding zones. Consider the case that the price
px in bidding zone x is lower than the price py in a neighboring
bidding zone y. In general, the EUPHEMIA algorithm will select
further offers in bidding zone x and discard offers in bidding zone
y to reduce the overall prices. As a consequence, the price in zone x
increase, and the price in zone y decreases. Loosely speaking, cross-
border trading leads to an averaging of prices in neighboring bidding
zones.

We quantify the emerging correlations in terms of the Pear-
son coefficient ρx,y, which is illustrated for all neighboring bidding
zones in Figs. 6(a) and 6(b). As before, we distinguish the periods
before and during the European energy crisis. We observe a substan-
tial decrease for some connections, in particular, Spain and France,
Norway (NO3, NO4, and NO5), and Finland, and for several con-
nections of Poland. Other correlations increase, for instance, NO2
and DE-LU. The last finding may be attributed, at least partially, to
the operation of NordLink as discussed above.

Further insights into the spatial aspects are obtained in terms
of correlation networks (cf. Refs. 40 and 41.). Here, every bidding
zone corresponds to a node of a network. Two bidding zones x and
y are connected if the mutual Pearson correlation exceeds a thresh-
old ρx,y > h. Note that we now take into account all pairs of bidding
zones in accordance with the literature.40,41 We note that in many
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FIG. 6. Correlations and communities of the European electricity price time series. (a) and (b) Pearson correlation ρ between neighboring bidding zones (a) before and
(b) during the energy crisis. (c) and (d) Correlation networks and communities. Two bidding zones x, y are linked if the mutual Pearson correlations exceed a threshold
ρx,y > h = 0.85. Communities in these networks are marked by different colors. Communities are computed (c) before and (d) during the energy crisis. Data sources are
summarized in the Appendix.

applications, time-delayed correlations are used in the context of
causal interactions. This is not appropriate in our case as all prices
are set simultaneously.

The resulting correlation networks are shown in Figs. 6(c) and
6(d) for the threshold parameter h = 0.85, comparing the period
before and during the energy crisis. We observe two general effects:
The number of edges decreases in the Nordics and the Baltics
and for the Iberian Peninsula, while they increase in Continen-
tal Europe. We recall that correlations emerge due to two reasons:
Common drivers and trading interactions. The observed changes in
the number of links, thus, do not necessarily hint at less or more
intense trading. Instead, it is also possible that the susceptibility to
external drivers became less similar (the Nordics) or more similar
(Continental Europe).

In a second step, we apply the Louvain algorithm42 to identify
communities in the respective network. For this, we use the imple-
mentation of the networkx python package with default parameters,
i.e., resolution set to 1.43

Before the crisis, the correlation network can be decomposed
into six communities. First, we observe a Western Scandinavian and
a Baltic community that are not connected at all for the given value
of h. Notably, the Swedish bidding zones belong to different com-
munities. Several high-voltage DC links enable electricity trading
across the Baltic Sea, most notably NordBalt between Sweden and

Lithuania and Estlink between Finland and Estonia.44 We conclude
that these links are essential for the formation of the Baltic commu-
nity.

Continental Europe is divided into a Northern and a Southern
community, the border roughly following the Alps and the Slo-
vakian–Hungarian border. The community boundary may, thus,
be at least partially explained in terms of the physical geography
of Europe. According to Fig. 4(a), we observe that average prices
are higher throughout the Southern community. Unsurprisingly,
Poland and Sicily form their own community as their electric-
ity markets differ considerably from their neighbors. Poland has a
distinct fuel mix, relying strongly on domestic coal and lignite.35

The energy crisis has a stark effect on the correlation network
in Northern Europe. The Nordic and Baltic communities fall apart
into small fragments. This observation has to be interpreted in terms
of the different fuel mix of each country and the dependency on
Russian imports. On the one hand, Northern Norway and North-
ern Sweden rely strongly on water power such that prices were only
weakly affected [cf. Fig. 4(c)]. On the other hand, the Baltic coun-
tries are still part of the Russian synchronous area45 and prices were
affected to a much higher extent [cf. Fig. 4(c)]. At the same time, the
Southern Norwegian bidding zones join the Northern Continental
community, which again may be attributed to the operation of the
NordLink interconnector.
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In Continental Europe, the number of edges generally increases
during the energy crisis. A remarkable effect is observed for France,
where correlations change considerably. These changes are not sur-
prising given that France suffered a strong increase in nuclear
unavailability [cf. Fig. 5(b)] and the strongest increase in average
prices (cf. Fig. 4). In fact, one observes strong changes in the patterns
of electricity trading between France and its neighbors. Compar-
ing 2021 and 2022, France turned from a net exporter (43.4 TWh)
to a net importer (16.5 TWh).46 The only exception is trading with
Italy, which remained largely constant.46 This manifests in changes
of price correlations, which generally decreased between France and
Northern Europe but stayed high or even increased between France
and Southern Europe. As a consequence, the French bidding zone
left the Northern and joined the Southern community.

Finally, the correlation between Spain and France decreased
strongly such that the Iberian Peninsula left the Southern Continen-
tal community. As discussed before, the Iberian Peninsula was only
weakly affected by the European energy crisis as it barely imports
natural gas from Russia.35

V. ELECTRICITY PRICE PATTERNS

We now consider the spatiotemporal patterns of the European
electricity price time series. We aim to identify and interpret the
dominant patterns and discuss how they were affected during the
energy crisis.

To this end, we aggregate all time series in a vector Ep(t), where
the nth component corresponds to the electricity price time in a spe-
cific bidding zone n at time t. Our goal is to decompose this vector
as

Ep(t) = 〈Ep〉 +
∑

m

am(t)Ecm, (3)

such that Ecm describes a spatial pattern and am(t) the amplitude of
the respective pattern at time t. The desired decomposition is pro-
vided by principal component analysis (PCA), a standard technique
for dimensionality reduction.47 This decomposition is optimal in the
following way. PCA selects the vectors Ecm, called principal compo-
nents (PCs), in a way that they capture as much of the variance of the
original time series as possible. Technically, the PCs Ecm are given by
the eigenvectors of the covariance matrix. The associated eigenvalue
λm measures how much of the overall variance of the multivariate
time series Ep(t) is explained by the mth PC.47 The ratio of λm and the
total variance will serve as a measure of the importance of a PC in
the following.

We remark that PCA is a linear method in the following sense.
Restricting the sum in Eq. (3) to M PCs corresponds to a projec-
tion of the original data onto an M-dimensional linear subspace.
PCA, thus, efficiently identifies all linear correlations but fails to
account for nonlinear relations in the data. Advanced methods of
nonlinear data reduction, thus, aim to replace the linear subspaces
by low-dimensional manifolds of arbitrary shape.48 In this initial
analysis, we restrict ourselves to common linear PCA because of its
high interpretability. Furthermore, we remark that the leading PC
already covers up to 80% of the variance such that nonlinear effects
can be assumed to be small.

In this context, we must take into account that electricity mar-
kets can change strongly over time as grids, regulations, or the fuel

FIG. 7. Importance of the principal components (PCs) for the price vector Ep(t)
as a function of reference time tr . The PCs were computed for a sliding window
of 180 days and tracked according to their overlap. The importance is quantified
by the fraction of the total variance explained by a given PC. Only PCs with an
explained variance of at least 5% are shown to increase visibility. PC1 refers to
the most important PC, explaining up to 80% of the variance, and is further ana-
lyzed in Fig. 8. PC2 refers to the second most important PC at the beginning
of the analysis, explaining up to almost 20% of the variance. PC2 decreases in
importance and becomes less substantial during the energy crisis. PC3 refers to
the second most important PC at the end of the analysis. Both PC2 and PC3
describe a north–south pattern as shown in Fig. 9.

markets evolve. Hence, we utilize an adaptive decomposition. We
compute PCA for separate intervals [tr − T, tr] and then shift the ref-
erence date as tr → t′r = tr + τ . In the following, we choose T = 180
days and τ = 14 days. The individual PCs are then tracked to ana-
lyze their evolution. Two PCs Ecm and Ec′

n at subsequent intervals are
identified if their overlap exceeds a threshold,

|
〈

Ec′
n,Ecm

〉

| ≥ 0.8. (4)

We have tested other values of the parameters T and τ to assess
the stability of the results. Choosing T substantially smaller than
180 days impedes the tracking of PCs and, thus, spoils interpretabil-
ity. Choosing T = 365 yields very similar results but reduces the
temporal resolution of the analysis.

Figure 7 shows the variance explained by individual PCs as a
function of time. We restrict the analysis to the most important PCs
that explain at least 5% of the variance for a given interval [tr − T, tr].
Curves may stop or start if a PC cannot be tracked according to
condition (4). We observe that only a few PCs are important to
capture the spatiotemporal patterns of European electricity prices.
The leading PC can be tracked over the entire time period and
explains more than half of the variance for the vast majority of
intervals [tr − T, tr]. The next-to-leading PC explains between 5%
and 20% of the variance, but cannot be tracked over the entire
period. In particular, we observe a change for a reference time tr

in early 2021. The importance of PC2 drops while another PC3
emerges and gains importance, replacing PC2 as the next-to-leading
PC.

A detailed analysis of the most important PC and its temporal
evolution is provided in Fig. 8. We display their spatial shapes Ecm at
selected reference times tr. Furthermore, we show their daily profile,
i.e., the associated amplitude am(t) for all hours of the day, averaged
over all days in the respective interval [tr − T, tr].

We find that the leading PC1 mostly describes the response
of the prices to the supply and demand illustrated in Fig. 2. The
daily profile has a characteristic shape related to the daily pro-
file of demand and solar generation. It peaks in the morning and
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FIG. 8. The leading principal component PC1 of the price vector Ep(t) and its temporal evolution. (a)–(c) The spatial pattern given by the components of the PC1 is shown as
a colormap. (d)–(f) For further interpretation, we compute the daily profile of the PC. For all hours of the day, we average the amplitude a1(t) over all days of the reference
interval [tr − T , tr ]. The PC is shown for three intervals: (a) and (d) before, (b) and (e) at the beginning and (c) and (f) during the energy crisis. The reference date tr is given
in the figure. This PC can be interpreted as the main response to changes in the residual load, leading to a characteristic daily pattern. The area of heavy participation in this
pattern grows from the Balkan and Sicily before the crisis to most of Continental Europe during the crisis.

early evening and has its minimum during the night. The compo-
nents of PC1 quantify how strongly the bidding zones participate
in this temporal evolution. Before the energy crisis, bidding zones
on the Balkan and Sicily show the strongest participation. The set
of strongly participating countries extends during the energy crisis,
covering most of Continental Europe. The participation is weak in
the Nordics, the Iberian Peninsula, and, to a lesser degree, Poland
and Estonia.

Notably, the Iberian Peninsula suffers a short period of partici-
pation in the early stage of the energy crisis and then reverts to levels
from before the energy crisis [Fig. 8(c)]. This may be related to the
independence of Portugal and Spain from Russian gas. In the emer-
gence of the energy crisis, prior to the Russian invasion, prices in
European bidding zones may be mainly driven by the uncertainty
of a gas shortage in Europe. This results in the high volatility of
the daily price patterns and, therefore, a strong participation of gas-
dependent bidding zones. Once the actual impact of the energy crisis
becomes evident, only the prices of countries with a high depen-
dency on Russian gas stay highly volatile, reducing the participation
of Portugal and Spain.

The observed spatial pattern largely coincides with the increase
in the average prices during the energy crisis shown in Fig. 4(c). That

is, the energy crisis did not just lead to an overall increase in the price
level in certain countries. Instead, prices in these countries became
much more susceptible to changes in the residual load and, thus,
more volatile (cf. Ref. 33). This effect was very similar in most of
Continental Europe, boosting correlations and the importance of the
respective PC.

The next-to-leading PCs are analyzed in Fig. 9. We observe that
both PC2 and PC3 can be interpreted as north–south modes dur-
ing the respective periods. Before the energy crisis, PC2 describes
the price differences between the Nordics and Southern Europe,
in particular, Sicily. We recall that average prices were higher in
Southern Europe than in the Nordics, cf. Fig. 4. The analysis of
the amplitude a2(t) of PC2 shows that this trend is strongly ampli-
fied in the early evening, while it is attenuated at noon and dur-
ing the night when either solar generation is high or demand is
low.

During the energy crisis, we still observe a strong north–south
mode given by PC3 but with different characteristics. Sicily no
longer stands out, but France now shows a similar pattern as South-
ern Europe. On the other side, Finland now stands out on the
opposite side. The amplitude now assumes its minimum at noon and
remains positive most of the night.
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FIG. 9. The next-to-leading principal components PC2 and PC3 of the price vector Ep(t) for two intervals (a) and (c) before and (b) and (d) during the energy crisis. The
reference dates tr are given in the figure. We show (a) and (b) the spatial pattern given by the components of the PC Ecm and (c) and (d) the daily profile of the amplitudes
am(t). The second most important PC corresponds to a north–south mode, with Sicily being the driver before the energy crisis. During the energy crisis, the mode shifts to
the Baltics.

VI. CONCLUSION AND OUTLOOK

Electricity trading is essential for the coordination of genera-
tion and demand in liberalized electricity markets. The European
electricity system is separated into several bidding zones that are
coupled to enable cross-border electricity trading. In this work,
we have conducted an analysis of European electricity price time
series with a focus on the emerging correlations and spatiotemporal
patterns.

Prices in different bidding zones are typically strongly cor-
related for two reasons. First, all markets are subject to similar
driving factors including daily patterns of the demand or similar
changes in the availability of renewable power. Second, cross-border
trading typically induces an averaging effect such that prices in
two neighboring bidding zones become more similar. The emerg-
ing correlations between bidding zones show distinct spatial pat-
terns, which become most obvious in the associated correlation
network. Before 2021, six regional communities could be observed
in this network: Western Scandinavia, the Baltic Sea, Poland,
Sicily, and two communities in Northern and Southern Continental
Europe.

The European energy crisis starting in 2021 brought about sig-
nificant changes both in the average electricity prices and in the
spatiotemporal correlations and patterns, in particular, the commu-
nity structure. While correlations in Continental Europe increased,

the communities in the Nordics fragmented. Stark changes were
observed for France, Norway, and the Iberian Peninsula. The
Southern Norwegian bidding zones became strongly coupled with
the German–Luxembourg bidding zone and, thus, joined the North-
ern Continental community. France saw a strong increase in daily
prices and turned from the Northern to the Southern European
community, with increased correlations to Italy. In contrast, corre-
lations to Spain diminished such that Portugal and Spain left the
Southern Continental community.

While the European energy crisis is essentially connected
to the Russian invasion of Ukraine and the soaring gas prices,
not all observations can be linked to this reason. In particu-
lar, we conclude that the stark changes in Norway and France
are strongly related to two simultaneous but independent events:
The high unavailability of French nuclear power plants and the
opening of the NordLink interconnector between Norway and
Germany.

Typical spatiotemporal patterns were identified using princi-
pal component analysis in a sliding window. We have shown that
regional differences in electricity prices can be largely described
with just a very few important principal components. The most
important principal component describes the different susceptibil-
ity of prices to changes in supply and demand. Some bidding zones
are heavily affected and, thus, have a much higher variability of
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prices and a stronger daily profile. The next-to-leading principle
component describes a north–south mode.

Both principal components underwent substantial changes
during the energy crisis. As the dependency on Russian gas imports,
as well as other local factors, differs substantially between countries,
so does the impact of the crisis. The leading principle component
associated with the overall variability of prices changed its spatial
shape during the crisis. The set of heavily affected countries grew
from Italy and the Balkan to include large parts of Central Europe.
Remarkably, Spain and Portugal were heavily affected only for a
short period at the beginning of the crisis.

Our results shed light on the spatiotemporal interactions and
dependencies of national electricity systems and markets. Cross-
border trading is an important measure to balance the fluctuations
of renewable power sources.8 A strong development of cross-border
interconnection capacities is foreseen in the next decade;49 such that
trading will become increasingly important.

Furthermore, our results may contribute to the growing field
of electricity price forecasting.50 Many current models focus on a
single bidding zone. The observed strong correlations and patterns
suggest that integrated modeling of all bidding zones is feasible and
promising.
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The raw data that support the findings of this study are
openly available from the ENTSO-E Transparency Platform31 and
Eurostat.35 Data processing is described in detail in the Appendix.

APPENDIX: DATA SOURCES AND PROCESSING

The raw data analyzed in this article are openly available. Time
series of day-ahead load and renewable generation forecasts, day-
ahead electricity prices and cross-border exchanges, and unavailable
nuclear generation have been obtained from the ENTSO-E trans-
parency platform.31 Notably, the ENTSO-E transparency platform
includes both planned and unplanned unavailabilities of power
plants. We consider only the planned unavailabilities because con-
tingencies occurring on short notice should not affect trading one
on the day-ahead market. Data are retrieved via the ENTSO-E rest-
ful API using the open source python package entsoe-py.51 Data
on aggregated imports and exports and natural gas dependency on
Russia are available at Eurostat.35

The raw data were processed at several points. Missing data
for day-ahead forecasts of load, solar, and wind generation were
replaced by actual load, solar, and wind generation. During a certain
time period, the day-ahead prices for the bidding zones PL and RO
were not denominated in EUR and were converted to EUR using a
fixed exchange rate. The bidding zones of Italy changed on 1 January
2021. The region of Umbria was moved from IT-Centre-North to
IT-Centre-South; the four production hubs IT-Brindisi, IT-Foggia,
IT-Priolo, and IT-Rossano were eliminated; and IT-Calabria was
added as a new bidding zone.52 To account for this, data of the
four hubs were aggregated with the bidding zone IT-South before
1 January 2021 and data from the bidding zones IT-Calabria and
IT-South were aggregated after this date. Data of the bidding zones
IT-Centre-North and IT-Centre-South remained unchanged.
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