001029019 001__ 1029019
001029019 005__ 20250204113913.0
001029019 0247_ $$2doi$$a10.1088/1361-648X/ad46d6
001029019 0247_ $$2ISSN$$a0953-8984
001029019 0247_ $$2ISSN$$a1361-648X
001029019 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04937
001029019 0247_ $$2pmid$$a38697198
001029019 0247_ $$2WOS$$aWOS:001224980700001
001029019 037__ $$aFZJ-2024-04937
001029019 082__ $$a530
001029019 1001_ $$0P:(DE-HGF)0$$aMüller, P. C.$$b0
001029019 245__ $$aChemical bonding in phase-change chalcogenides
001029019 260__ $$aBristol$$bIOP Publ.$$c2024
001029019 3367_ $$2DRIVER$$aarticle
001029019 3367_ $$2DataCite$$aOutput Types/Journal article
001029019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723539170_5470
001029019 3367_ $$2BibTeX$$aARTICLE
001029019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029019 3367_ $$00$$2EndNote$$aJournal Article
001029019 520__ $$almost all phase-change memory materials (PCM) contain chalcogen atoms, and their chemical bonds have been denoted both as 'electron-deficient' [sometimes referred to as 'metavalent'] and 'electron-rich' ['hypervalent', multicentre]. The latter involve lone-pair electrons. We have performed calculations that can discriminate unambiguously between these two classes of bond and have shown that PCM have electron-rich, 3c–4e ('hypervalent') bonds. Plots of charge transferred between (ET) and shared with (ES) neighbouring atoms cannot on their own distinguish between 'metavalent' and 'hypervalent' bonds, both of which involve single-electron bonds. PCM do not exhibit 'metavalent' bonding and are not electron-deficient; the bonding is electron-rich of the 'hypervalent' or multicentre type.
001029019 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001029019 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029019 7001_ $$0P:(DE-HGF)0$$aElliott, S. R.$$b1
001029019 7001_ $$0P:(DE-HGF)0$$aDronskowski, R.$$b2
001029019 7001_ $$0P:(DE-Juel1)130741$$aJones, R. O.$$b3$$eCorresponding author
001029019 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ad46d6$$gVol. 36, no. 32, p. 325706 -$$n32$$p325706 -$$tJournal of physics / Condensed matter$$v36$$x0953-8984$$y2024
001029019 8564_ $$uhttps://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.pdf$$yOpenAccess
001029019 8564_ $$uhttps://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.gif?subformat=icon$$xicon$$yOpenAccess
001029019 8564_ $$uhttps://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029019 8564_ $$uhttps://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029019 8564_ $$uhttps://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029019 8767_ $$d2024-07-19$$eHybrid-OA$$jPublish and Read
001029019 909CO $$ooai:juser.fz-juelich.de:1029019$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001029019 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lehrstuhl für Festkörper- and Quantenchemie, Institut für Anorganische Chemie, RWTH Aachen University, D-52056 Aachen, Germany$$b0
001029019 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom$$b1
001029019 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lehrstuhl für Festkörper- and Quantenchemie, Institut für Anorganische Chemie, RWTH Aachen University, D-52056 Aachen, Germany$$b2
001029019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130741$$aForschungszentrum Jülich$$b3$$kFZJ
001029019 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001029019 9141_ $$y2024
001029019 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029019 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001029019 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001029019 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-23
001029019 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029019 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001029019 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029019 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-11$$wger
001029019 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2022$$d2024-12-11
001029019 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001029019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001029019 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001029019 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001029019 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001029019 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001029019 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001029019 980__ $$ajournal
001029019 980__ $$aVDB
001029019 980__ $$aUNRESTRICTED
001029019 980__ $$aI:(DE-Juel1)PGI-1-20110106
001029019 980__ $$aAPC
001029019 9801_ $$aAPC
001029019 9801_ $$aFullTexts