001     1029019
005     20250204113913.0
024 7 _ |a 10.1088/1361-648X/ad46d6
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04937
|2 datacite_doi
024 7 _ |a 38697198
|2 pmid
024 7 _ |a WOS:001224980700001
|2 WOS
037 _ _ |a FZJ-2024-04937
082 _ _ |a 530
100 1 _ |a Müller, P. C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Chemical bonding in phase-change chalcogenides
260 _ _ |a Bristol
|c 2024
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723539170_5470
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a lmost all phase-change memory materials (PCM) contain chalcogen atoms, and their chemical bonds have been denoted both as 'electron-deficient' [sometimes referred to as 'metavalent'] and 'electron-rich' ['hypervalent', multicentre]. The latter involve lone-pair electrons. We have performed calculations that can discriminate unambiguously between these two classes of bond and have shown that PCM have electron-rich, 3c–4e ('hypervalent') bonds. Plots of charge transferred between (ET) and shared with (ES) neighbouring atoms cannot on their own distinguish between 'metavalent' and 'hypervalent' bonds, both of which involve single-electron bonds. PCM do not exhibit 'metavalent' bonding and are not electron-deficient; the bonding is electron-rich of the 'hypervalent' or multicentre type.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Elliott, S. R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dronskowski, R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jones, R. O.
|0 P:(DE-Juel1)130741
|b 3
|e Corresponding author
773 _ _ |a 10.1088/1361-648X/ad46d6
|g Vol. 36, no. 32, p. 325706 -
|0 PERI:(DE-600)1472968-4
|n 32
|p 325706 -
|t Journal of physics / Condensed matter
|v 36
|y 2024
|x 0953-8984
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029019/files/M%C3%BCller_2024_J._Phys.__Condens._Matter_36_325706.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029019
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Lehrstuhl für Festkörper- and Quantenchemie, Institut für Anorganische Chemie, RWTH Aachen University, D-52056 Aachen, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Lehrstuhl für Festkörper- and Quantenchemie, Institut für Anorganische Chemie, RWTH Aachen University, D-52056 Aachen, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130741
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21