001029020 001__ 1029020
001029020 005__ 20250204113913.0
001029020 0247_ $$2doi$$a10.1088/2632-2153/ad51ca
001029020 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04938
001029020 0247_ $$2WOS$$aWOS:001248895600001
001029020 037__ $$aFZJ-2024-04938
001029020 082__ $$a621.3
001029020 1001_ $$0P:(DE-Juel1)177830$$aKipp, Jonathan$$b0$$eCorresponding author
001029020 245__ $$aMachine learning inspired models for Hall effects in non-collinear magnets
001029020 260__ $$aBristol$$bIOP Publishing$$c2024
001029020 3367_ $$2DRIVER$$aarticle
001029020 3367_ $$2DataCite$$aOutput Types/Journal article
001029020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723539439_22423
001029020 3367_ $$2BibTeX$$aARTICLE
001029020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029020 3367_ $$00$$2EndNote$$aJournal Article
001029020 520__ $$aThe anomalous Hall effect has been front and center in solid state research and material science forover a century now, and the complex transport phenomena in nontrivial magnetic textures havegained an increasing amount of attention, both in theoretical and experimental studies. However, a clear path forward to capturing the influence of magnetization dynamics on anomalous Hall effect even in smallest frustrated magnets or spatially extended magnetic textures is still intensively sought after. In this work, we present an expansion of the anomalous Hall tensor into symmetrically invariant objects, encoding the magnetic configuration up to arbitrary power of spin. We show that these symmetric invariants can be utilized in conjunction with advanced regularization techniques in order to build models for the electric transport in magnetic textures which are, on one hand, complete with respect to the point group symmetry of the underlying lattice, and on the other hand, depend on a minimal number of order parameters only. Here, using a four-band tight-binding model on a honeycomb lattice, we demonstrate that the developed method can be used to address the importance and properties of higher-order contributions to transverse transport. The efficiency and breadth enabled by this method provides an ideal systematic approach to tackle the inherent complexity of response properties of noncollinear magnets, paving the way to the exploration of electric transport in intrinsically frustrated magnets as well as large-scale magnetic textures.
001029020 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001029020 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)$$c437337265$$x1
001029020 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und magnetischen Eigenschaften in zweidimensionalen Materialien mit niedriger Symmetrie (B06) (444844585)$$c444844585$$x2
001029020 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x3
001029020 536__ $$0G:(GEPRIS)403235169$$aDFG project 403235169 - Magnetochirale Transporteffekte in Skyrmionen (403235169)$$c403235169$$x4
001029020 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029020 7001_ $$0P:(DE-Juel1)169506$$aLux, Fabian R$$b1
001029020 7001_ $$aPürling, Thorben$$b2
001029020 7001_ $$aMorrison, Abigail$$b3
001029020 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4
001029020 7001_ $$aPinna, Daniele$$b5
001029020 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b6
001029020 773__ $$0PERI:(DE-600)3017004-7$$a10.1088/2632-2153/ad51ca$$gVol. 5, no. 2, p. 025060 -$$n2$$p025060 -$$tMachine learning: science and technology$$v5$$x2632-2153$$y2024
001029020 8564_ $$uhttps://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.pdf$$yOpenAccess
001029020 8564_ $$uhttps://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.gif?subformat=icon$$xicon$$yOpenAccess
001029020 8564_ $$uhttps://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029020 8564_ $$uhttps://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029020 8564_ $$uhttps://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029020 8767_ $$d2024-07-19$$eAPC$$jPublish and Read
001029020 909CO $$ooai:juser.fz-juelich.de:1029020$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001029020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177830$$aForschungszentrum Jülich$$b0$$kFZJ
001029020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
001029020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b6$$kFZJ
001029020 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001029020 9141_ $$y2024
001029020 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029020 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001029020 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001029020 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001029020 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029020 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001029020 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001029020 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029020 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001029020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACH LEARN-SCI TECHN : 2022$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:02:38Z
001029020 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:02:38Z
001029020 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:02:38Z
001029020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001029020 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACH LEARN-SCI TECHN : 2022$$d2025-01-01
001029020 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001029020 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001029020 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x2
001029020 980__ $$ajournal
001029020 980__ $$aVDB
001029020 980__ $$aUNRESTRICTED
001029020 980__ $$aI:(DE-Juel1)PGI-1-20110106
001029020 980__ $$aI:(DE-Juel1)IAS-6-20130828
001029020 980__ $$aI:(DE-Juel1)INM-6-20090406
001029020 980__ $$aAPC
001029020 9801_ $$aAPC
001029020 9801_ $$aFullTexts