001     1029020
005     20250204113913.0
024 7 _ |a 10.1088/2632-2153/ad51ca
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04938
|2 datacite_doi
024 7 _ |a WOS:001248895600001
|2 WOS
037 _ _ |a FZJ-2024-04938
082 _ _ |a 621.3
100 1 _ |a Kipp, Jonathan
|0 P:(DE-Juel1)177830
|b 0
|e Corresponding author
245 _ _ |a Machine learning inspired models for Hall effects in non-collinear magnets
260 _ _ |a Bristol
|c 2024
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723539439_22423
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The anomalous Hall effect has been front and center in solid state research and material science forover a century now, and the complex transport phenomena in nontrivial magnetic textures havegained an increasing amount of attention, both in theoretical and experimental studies. However, a clear path forward to capturing the influence of magnetization dynamics on anomalous Hall effect even in smallest frustrated magnets or spatially extended magnetic textures is still intensively sought after. In this work, we present an expansion of the anomalous Hall tensor into symmetrically invariant objects, encoding the magnetic configuration up to arbitrary power of spin. We show that these symmetric invariants can be utilized in conjunction with advanced regularization techniques in order to build models for the electric transport in magnetic textures which are, on one hand, complete with respect to the point group symmetry of the underlying lattice, and on the other hand, depend on a minimal number of order parameters only. Here, using a four-band tight-binding model on a honeycomb lattice, we demonstrate that the developed method can be used to address the importance and properties of higher-order contributions to transverse transport. The efficiency and breadth enabled by this method provides an ideal systematic approach to tackle the inherent complexity of response properties of noncollinear magnets, paving the way to the exploration of electric transport in intrinsically frustrated magnets as well as large-scale magnetic textures.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)
|0 G:(GEPRIS)437337265
|c 437337265
|x 1
536 _ _ |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und magnetischen Eigenschaften in zweidimensionalen Materialien mit niedriger Symmetrie (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 2
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 3
536 _ _ |a DFG project 403235169 - Magnetochirale Transporteffekte in Skyrmionen (403235169)
|0 G:(GEPRIS)403235169
|c 403235169
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lux, Fabian R
|0 P:(DE-Juel1)169506
|b 1
700 1 _ |a Pürling, Thorben
|b 2
700 1 _ |a Morrison, Abigail
|b 3
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
700 1 _ |a Pinna, Daniele
|b 5
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 6
773 _ _ |a 10.1088/2632-2153/ad51ca
|g Vol. 5, no. 2, p. 025060 -
|0 PERI:(DE-600)3017004-7
|n 2
|p 025060 -
|t Machine learning: science and technology
|v 5
|y 2024
|x 2632-2153
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029020/files/Kipp_2024_Mach._Learn.__Sci._Technol._5_025060.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029020
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177830
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACH LEARN-SCI TECHN : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:02:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:02:38Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:02:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACH LEARN-SCI TECHN : 2022
|d 2025-01-01
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21