001029093 001__ 1029093
001029093 005__ 20250203133149.0
001029093 0247_ $$2doi$$a10.1021/acsaem.4c01117
001029093 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04953
001029093 0247_ $$2WOS$$aWOS:001263167400001
001029093 037__ $$aFZJ-2024-04953
001029093 082__ $$a540
001029093 1001_ $$0P:(DE-Juel1)176955$$aOverhoff, Gerrit Michael$$b0$$ufzj
001029093 245__ $$aEnhancing the Electrochemical Performance of Blended Single-Ion Conducting Polymers by Smart Modification of the Polymer Structure
001029093 260__ $$aWashington, DC$$bACS Publications$$c2024
001029093 3367_ $$2DRIVER$$aarticle
001029093 3367_ $$2DataCite$$aOutput Types/Journal article
001029093 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724061684_30733
001029093 3367_ $$2BibTeX$$aARTICLE
001029093 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029093 3367_ $$00$$2EndNote$$aJournal Article
001029093 520__ $$aSingle lithium-ion conducting polymers represent a promisingclass of electrolytes that potentially enable the utilization of lithium metal anodes in next-generation batteries. The immobilization of anions within the polymer’s structure in principle mitigates issues related to localized ion depletion, resulting in decreased cell polarization when compared to common dual-ion conductors comprising poly(ethylene oxide) and lithium salt. However, the intrinsic rigidity of these materials often necessitates incorporation of flowable components and blending with other polymers, such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), to enhance the mechanical flexibility of the resulting polymer membranes. Within polymer blends, distinct phases may be present, and the distribution of plasticizers among these phases is highly crucial as they act as carrier molecules for Li+ transport. In this study, we thus explored the impact of polymer chain modification from a rigid aromatic single-ion conducting polymer to a more flexible polymer by introducing ethylene glycol units into the backbone. Notably, this alteration yielded a substantial decrease of 100 °C of the glass transition temperature and a 6-fold increase in ionic conductivity (0.5 mS cm−1 @ 40 °C) after blending with PVdF-HFP and addition of ethylene carbonate/dimethyl carbonate. Atomistic molecular dynamics simulations suggest that this enhancement can be attributed to a high concentration of plasticizer within the Li+ containing phase. In symmetric Li||Li cells, exceptional performance was achieved, demonstrating operation at high limiting current density and successful plating/stripping for 1000 h at 0.2 mA cm−2. When paired with high-voltage NMC cathodes, the introduced polymer structures exhibited noteworthy capacity retention after 800 cycles, emphasizing advantages brought forth by flexible and adapted polymer architecture.
001029093 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001029093 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001029093 536__ $$0G:(DE-Juel1)BMBF-13XP0429A$$aFB2-POLY - Zellplattform Polymere (BMBF-13XP0429A)$$cBMBF-13XP0429A$$x2
001029093 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029093 7001_ $$0P:(DE-Juel1)176525$$aVerweyen, Elisabeth$$b1
001029093 7001_ $$0P:(DE-HGF)0$$aRoering, Philipp$$b2
001029093 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
001029093 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b4$$eCorresponding author$$ufzj
001029093 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.4c01117$$gp. acsaem.4c01117$$n14$$p5893-5904$$tACS applied energy materials$$v7$$x2574-0962$$y2024
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.pdf$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.pdf$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.gif?subformat=icon$$xicon$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.gif?subformat=icon$$xicon$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029093 8564_ $$uhttps://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029093 8767_ $$d2024-07-22$$eHybrid-OA$$jPublish and Read
001029093 909CO $$ooai:juser.fz-juelich.de:1029093$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001029093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176955$$aForschungszentrum Jülich$$b0$$kFZJ
001029093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
001029093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b4$$kFZJ
001029093 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001029093 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001029093 9141_ $$y2024
001029093 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029093 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001029093 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001029093 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029093 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001029093 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029093 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001029093 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2024-12-11
001029093 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001029093 980__ $$ajournal
001029093 980__ $$aVDB
001029093 980__ $$aUNRESTRICTED
001029093 980__ $$aI:(DE-Juel1)IMD-4-20141217
001029093 980__ $$aAPC
001029093 9801_ $$aAPC
001029093 9801_ $$aFullTexts