001     1029093
005     20250203133149.0
024 7 _ |a 10.1021/acsaem.4c01117
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04953
|2 datacite_doi
024 7 _ |a WOS:001263167400001
|2 WOS
037 _ _ |a FZJ-2024-04953
082 _ _ |a 540
100 1 _ |a Overhoff, Gerrit Michael
|0 P:(DE-Juel1)176955
|b 0
|u fzj
245 _ _ |a Enhancing the Electrochemical Performance of Blended Single-Ion Conducting Polymers by Smart Modification of the Polymer Structure
260 _ _ |a Washington, DC
|c 2024
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724061684_30733
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Single lithium-ion conducting polymers represent a promisingclass of electrolytes that potentially enable the utilization of lithium metal anodes in next-generation batteries. The immobilization of anions within the polymer’s structure in principle mitigates issues related to localized ion depletion, resulting in decreased cell polarization when compared to common dual-ion conductors comprising poly(ethylene oxide) and lithium salt. However, the intrinsic rigidity of these materials often necessitates incorporation of flowable components and blending with other polymers, such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), to enhance the mechanical flexibility of the resulting polymer membranes. Within polymer blends, distinct phases may be present, and the distribution of plasticizers among these phases is highly crucial as they act as carrier molecules for Li+ transport. In this study, we thus explored the impact of polymer chain modification from a rigid aromatic single-ion conducting polymer to a more flexible polymer by introducing ethylene glycol units into the backbone. Notably, this alteration yielded a substantial decrease of 100 °C of the glass transition temperature and a 6-fold increase in ionic conductivity (0.5 mS cm−1 @ 40 °C) after blending with PVdF-HFP and addition of ethylene carbonate/dimethyl carbonate. Atomistic molecular dynamics simulations suggest that this enhancement can be attributed to a high concentration of plasticizer within the Li+ containing phase. In symmetric Li||Li cells, exceptional performance was achieved, demonstrating operation at high limiting current density and successful plating/stripping for 1000 h at 0.2 mA cm−2. When paired with high-voltage NMC cathodes, the introduced polymer structures exhibited noteworthy capacity retention after 800 cycles, emphasizing advantages brought forth by flexible and adapted polymer architecture.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 1
536 _ _ |a FB2-POLY - Zellplattform Polymere (BMBF-13XP0429A)
|0 G:(DE-Juel1)BMBF-13XP0429A
|c BMBF-13XP0429A
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Verweyen, Elisabeth
|0 P:(DE-Juel1)176525
|b 1
700 1 _ |a Roering, Philipp
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acsaem.4c01117
|g p. acsaem.4c01117
|0 PERI:(DE-600)2916551-9
|n 14
|p 5893-5904
|t ACS applied energy materials
|v 7
|y 2024
|x 2574-0962
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029093/files/ae-2024-01117v-R1.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029093/files/overhoff-et-al-2024-enhancing-the-electrochemical-performance-of-blended-single-ion-conducting-polymers-by-smart.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029093
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176955
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21