001     10291
005     20200423202755.0
024 7 _ |2 DOI
|a 10.1103/PhysRevLett.103.096101
024 7 _ |2 WOS
|a WOS:000269718500042
024 7 _ |2 Handle
|a 2128/7243
037 _ _ |a PreJuSER-10291
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)VDB71268
|a Romanyuk, K.
|b 0
|u FZJ
245 _ _ |a Nanoscale Pit Formation at 2D Ge Layers on Si: Influence of Energy and Enropy
260 _ _ |a College Park, Md.
|b APS
|c 2009
300 _ _ |a 096101
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4925
|a Physical Review Letters
|v 103
|x 0031-9007
|y 9
500 _ _ |a The authors acknowledge critical reading of the manuscript by S. N. Filimonov and V. Cherepanov. We also acknowledge financial support from the EU Nanocage Project No. MEST-CT-2004-506854.
520 _ _ |a The structural stability of two-dimensional (2D) SiGe nanostructures is studied by scanning tunneling microscopy. The formation of pits with a diameter of 2-30 nm in one atomic layer thick Ge stripes is observed. The unanticipated pit formation occurs due to an energetically driven motion of the Ge atoms out of the Ge stripe towards the Si terminated step edge followed by an entropy driven GeSi intermixing at the step edge. Using conditions where the pits coalesce results in the formation of freestanding 8 nm wide GeSi wires on Si(111).
536 _ _ |0 G:(DE-Juel1)FUEK414
|2 G:(DE-HGF)
|a Kondensierte Materie
|c P54
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Brona, J.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB5601
|a Voigtländer, B.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.103.096101
|g Vol. 103, p. 096101
|p 096101
|q 103<096101
|t Physical review letters
|v 103
|x 0031-9007
|y 2009
856 4 _ |u https://juser.fz-juelich.de/record/10291/files/FZJ-10291.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/10291/files/FZJ-10291.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10291/files/FZJ-10291.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10291/files/FZJ-10291.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:10291
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK414
|a DE-HGF
|b Materie
|k P54
|l Kondensierte Materie
|v Kondensierte Materie
|x 0
|z entfällt bis 2009
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)120550
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21