001     1029102
005     20250203133150.0
024 7 _ |a 10.1002/pip.3832
|2 doi
024 7 _ |a 1062-7995
|2 ISSN
024 7 _ |a 1099-159X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04962
|2 datacite_doi
024 7 _ |a WOS:001268477600001
|2 WOS
037 _ _ |a FZJ-2024-04962
082 _ _ |a 690
100 1 _ |a Patel, Neel
|0 P:(DE-Juel1)184851
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Assessing the accuracy of two steady‐state temperature models for onboard passenger vehicle photovoltaics applications
260 _ _ |a Chichester
|c 2024
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1728886354_31823
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We assess the accuracy of two steady-state temperature models, namely, Ross and Faiman, in the context of photovoltaics (PV) systems integrated in vehicles. Therefore, we present an analysis of irradiance and temperature data monitored on a PV system on top of a vehicle. Next, we have modeled PV cell temperatures in this PV system, representing onboard vehicle PV systems using the Ross and Faiman model. These models could predict temperatures with a coefficient of determination (R2) in the range of 0.61–0.88 for the Ross model and 0.63–0.93 for the Faiman model. It was observed that the Ross and Faiman model have high errors when instantaneous data are used but become more accurate when averaged to timesteps of greater than 1000–1500 s. The Faiman model's instantaneous response was independent of the variations in the weather conditions, especially wind speed, due to a lack of thermal capacitance term in the model. This study found that the power and energy yield calculations were minimally affected by the errors in temperature predictions. However, a transient model, which includes the thermal mass of the vehicle and PV modules, is necessary for an accurate instantaneous temperature prediction of PV modules in vehicle-integrated (VIPV) applications.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pieters, Bart
|0 P:(DE-Juel1)130284
|b 1
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 2
|u fzj
700 1 _ |a Sovetkin, Evgenii
|0 P:(DE-Juel1)177942
|b 3
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 4
|u fzj
700 1 _ |a Reinders, Angèle
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1002/pip.3832
|g p. pip.3832
|0 PERI:(DE-600)2023295-0
|n 11
|p 790-798
|t Progress in photovoltaics
|v 32
|y 2024
|x 1062-7995
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029102/files/PPV32_790_Assessing%20the%20accuracy%20of%20two%20steady%E2%80%90state%20temperature%20models%20for%20onboard.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029102/files/PPV32_790_Assessing%20the%20accuracy%20of%20two%20steady%E2%80%90state%20temperature%20models%20for%20onboard.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029102/files/PPV32_790_Assessing%20the%20accuracy%20of%20two%20steady%E2%80%90state%20temperature%20models%20for%20onboard.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029102/files/PPV32_790_Assessing%20the%20accuracy%20of%20two%20steady%E2%80%90state%20temperature%20models%20for%20onboard.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029102/files/PPV32_790_Assessing%20the%20accuracy%20of%20two%20steady%E2%80%90state%20temperature%20models%20for%20onboard.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029102
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130284
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177942
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-3-20101013
|k IMD-3
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-3-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21