001     1029111
005     20250822121412.0
024 7 _ |a 10.34734/FZJ-2024-04967
|2 datacite_doi
037 _ _ |a FZJ-2024-04967
041 _ _ |a English
100 1 _ |a John, Chelsea Maria
|0 P:(DE-Juel1)187395
|b 0
|u fzj
111 2 _ |a PhysML Workshop 2024
|g PhysML
|c Oslo
|d 2024-05-14 - 2024-05-16
|w Norway
245 _ _ |a Harnessing Fourier Neural Operator For Rayleigh–Bénard Convection
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1721714760_27958
|2 PUB:(DE-HGF)
|x Other
502 _ _ |c TUHH
520 _ _ |a Rayleigh-Bénard convection, is a classic fluid dynamics problem, with applications in geophysical, astrophysical, and industrial flows. Fourier Neural Operator (FNO) leverages neural networks and Fourier analysis to efficiently model spatiotemporal dynamics in fluid systems, offering a promising avenue for accurate and scalable simulations. In this poster, first results on the application of FNO for tackling the Rayleigh-Benard convection equations is presented.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5121 - Supercomputing & Big Data Facilities (POF4-512)
|0 G:(DE-HGF)POF4-5121
|c POF4-512
|f POF IV
|x 1
536 _ _ |a Inno4Scale - Innovative Algorithms for Applications on European Exascale Supercomputers (101118139)
|0 G:(EU-Grant)101118139
|c 101118139
|f HORIZON-EUROHPC-JU-2022-ALG-02
|x 2
536 _ _ |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV)
|0 G:(DE-Juel-1)ATML-X-DEV
|c ATML-X-DEV
|x 3
700 1 _ |a Herten, Andreas
|0 P:(DE-Juel1)145478
|b 1
|u fzj
700 1 _ |a Kesselheim, Stefan
|0 P:(DE-Juel1)185654
|b 2
|u fzj
700 1 _ |a Ruprecht, Daniel
|0 P:(DE-HGF)0
|b 3
856 4 _ |u https://sites.google.com/view/physmlworkshop24/titles-and-abstracts
856 4 _ |u https://juser.fz-juelich.de/record/1029111/files/FNO_RBC_poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1029111/files/FNO_RBC_poster.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1029111/files/FNO_RBC_poster.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1029111/files/FNO_RBC_poster.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1029111/files/FNO_RBC_poster.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1029111
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185654
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5121
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21