Harnessing Fourier Neural Operator For Rayleigh-Bénard Convection

Chelsea John*°, Andreas Herten*, Stefan Kesselheim*, Daniel Ruprecht° *Jülich Supercomputing Center, °Technical University of Hamburg

Rayleigh-Bénard Convection (RBC)

- Natural buoyancy-driven convective motion occurring in fluid layers due to temperature gradient
- Modelled by incompressible Navier-Stokes equations under Boussineq approximation

Rayleigh Number Ra = 10^4 at time t = 49.99, generated using Dedalus software^[1]

RBC Model Equations

Where:

- $\mathbf{u} = (u_x, u_y, u_z)$: Flow velocity
- θ : Temperature deviation from conduction state
- *p*: Pressure deviation from conduction state
- Δ : Temperature difference between boundaries
- ν : Kinematic viscosity of fluid
- α : Thermal expansion coefficient
- κ : Thermal diffusivity of fluid
- $Pr = \nu/\kappa$: Prandtl number
- $Ra = \rho_0 \alpha g \Delta d^3 / \nu \kappa$: Rayleigh Number

Fourier Neural Operators (FNO)[5]

- Neural Operators are able to learn function space mappings
- Neural Operator when parametrised by integral kernel in Fourier space gives Fourier Neural Operator
- Resolution-invariant
- Quasi-linear complexity with FFT

Let v be input vector and u output vector, then deep neural network with K_i layer and σ_i activation has the form:

$$u = (K_l \circ \sigma_l \circ \ldots \circ \sigma_1 \circ K_0)v$$

For Fourier Neural operator, v and u are functions with discretisation. Let x, y be points in domain Dthen $K: v_t \mapsto v_{t+1}$ is parameterised as:

$$v_{t+1}(x) = \mathcal{F}^{-1}\left(\mathcal{F}(k) \cdot \mathcal{F}(v_t)\right)(x) + Wv_t(x), \ \forall x \in D$$

Where k is a periodic function in D and , $\mathscr{F}, \mathscr{F}^{-1}$ are Fourier transform and it's inverse respectively

<u>Fig.</u>: Fourier neural operator architecture with input v, lifted to higher channel space by neural network P, passed through Fourier layers and activation function σ , then projected back to target dimension by neural network Q to give output u. Fourier layer takes input v' and applies Fourier transform \mathscr{F} , linear transform R on lower Fourier modes, filtering out higher modes; applies inverse Fourier transform \mathscr{F}^{-1} then concatenates the output with local linear transform W which is passed through activation function σ .

Solving RBC in 2D with FNO

- **Problem**: Given \mathcal{S}_t (state at t), predict $\mathcal{S}_{t'}$ (state at $t' = t + \delta t$)
- FNO Model Input: $\mathcal{S}_t = (u_{x,t}, u_{z,t}, p_t, b_t)$
- FNO Model Output: $\mathcal{S}_{t'} = (u_{x,t'}, u_{z,t'}, p_{t'}, b_{t'})$
- Code: Implemented in Python using PyTorch
- Device: NVIDIA A100 (40GB) GPU^[6]

Data Card

Source: Dedalus^[1]

Samples: {train:1499, val:1600, test:1600}

Initial state, \mathcal{S}_0 = (0, 0, 0, random.normal())

Grid(x, z): (64,64)

Pr: 1

Where:

 $u_{x,t}$: velocity x-component at time t $u_{z,t}$: velocity z-component at time t

 p_t : pressure at time t

 b_t : buoyancy at time t

Training Parameters

Learning_rate: 0.00039 Optimiser: AdamW Loss: torch.nn.SmoothL1Loss()

> Epoch: 2000 Batch_size: 30

FNO Model Card

Fourier_layer: 2 x_fourier_modes: 32 z_fourier_modes: 32 Activation: ReLU layer_width: 128 projection_width: 32

Fig (Left): FNO model training loss on yaxis (log scale) and epoch step on x-axis for 2D RBC problem with moderate turbulence $Ra = 10^4$. Trained till loss $\approx \mathcal{O}(10^{-6})$

Fig (Right): FNO model validation loss on y-axis and epoch step on x-axis for 2D RBC problem with moderate turbulence $Ra = 10^4$. Validation loss $\approx \mathcal{O}(10^{-1})$

[6]: JUWELS Booster, https://jlsrf.org/index.php/lsf/ article/view/171

FNO Result For 2D RBC

For $t \in [0,374.256]$ (In Training Distribution Data) RBC-2D with 64×64 grid and $Ra = 10^4$ with inputs at t = 250.5Velocity x-component at t=250.75 Pressure at t=250.75Velocity z-component at t=250.75

<u>Fig.</u>: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time $t = 250.75 \in [0.374.256]$ on 64×64 grid for 2D RBC problem with moderate turbulence $Ra=10^4$. Dedalus output and FNO model output match with error $\approx \mathcal{O}(10^{-5})$

For $t \notin [0,374.256]$ (Out Of Training Distribution Data) RBC-2D with 64×64 grid and $Ra = 10^4$ with inputs at t = 389.99

<u>Fig.</u>: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time $t = 390.25 \notin [0,374.256]$ on 64×64 grid for 2D RBC problem with moderate turbulence $Ra=10^4$. Dedalus output and FNO model output matches with error $\approx \mathcal{O}(10^{-5})$

Conclusion

- FNO shows promising results for solving two dimensional Rayleigh-Bénard Convection
- FNO model does not give results for initial evolution of system when Kinetic Energy $< \mathcal{O}(10^{-5})$
- Verification through Dedalus (PDE solver)

Next Steps

- Solve Rayleigh-Bénard Convection for high turbulence with $Ra > 10^4$ and liquids with Pr > 1 or < 1
- Solve Rayleigh-Bénard Convection in three dimensions
- Optimise memory storage
- Optimise dense convolution in Fourier space
- Implement parallel training strategies

Acknowledgements

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No: 101118139. The JU receives support from the European Union's Horizon Europe Programme. Compute time on the GCS Supercomputer JUWELS Booster at JSC is provided through the Gauss Center for Supercomputing e.V.

