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Rayleigh-Béenard Convection (RBC) RBC Model Equations

¢ Natural buoyancy-driven convective motion T T =Ty,(Cold) : . .
occurring in fluid layers due to temperature Applications 7y Dimensionless Equations
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® Modelled by incompressible Navier-Stokes | (\QOO(/ % d Fluid E ot

equations under Boussineq approximation \3\)
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~ N9 S u = (u, Uy, u,): Flow velocity a: Thermal expansion coefficient

Simulation: Two-dimensional Rayleigh-Bénard convection with _ - 0: Temperature deviation from conduction state K: Thermal diffusivity of fluid
Rayleigh Number Ra = 104 at time t = 49.99, generated using Dedalus Atmospherlc Flows . :
softwarel p: Pressure deviation from conduction state Pr = v/x: Prandtl number

[2]: LumenLearning - The Solar Interior: Theory

[3]: UniversityOfSydney - Geothermal Energy A: Temperature difference between boundaries Ra = poagAd3/ vk : Rayleigh Number

[1]: https://dedalus-project.org/ [4]: MyNasaData - Ocean Circulation Pattern

Fourier Neural Operators (FNO)®! Solving RBC in 2D with FNO

. . e Problem: Given &, (state at ¢), predict &, (state at t' = t + Ot
Neural Operators are able to learn Let v be input vector and u output vector, then deep ’(; ) P b r Wh) o
function space mappings neural network with K layer and o; activation has * FNO Model Input: o, = (ux,t’ Uy 1 Pr ) ofe. .
l l _ u, . velocity x-component at time ¢
Neural Operator wh trised b the form: » FNO Model Output: & = (i, Uy 1 Py by) i. : velocity z-component at time ¢
® . ’ . ) - -
ceural uperalor when parametrised by U= (Kyooy0....00Kyv e Code: Implemented in Python using PyTorch pZ:tpressure at time 7
integral kernel in Fourier space gives o Py 6 a .
_ For Fourier Neural operator, v and u are functions Device: NVIDIAA100 (40GB) GPUEI b,: buoyancy at time ¢
Fourier Neural Operator with discretisation. Let x, y be points in domain D
, I | | Data Card Training Parameters FNO Model Card
e Resolution-invariant then K : v, = v, | is parameterised as: |
Source: Dedalus!] Learning_rate: 0.00039 Fourier layer: 2
e Quasi-linear complexity with FFT V(0 = FHF k) - F(v))(x) + Wy(x), Vx €D Samples: {train:1499, val:1600, test:1600} Optimiser: AdamW x_fourier_modes: 32
| o o ol Initial state, §y= (0, 0, 0, random.normal()) | | Loss: torch.nn.SmoothL 1Loss() z_fourier_modes: 32
Where k is a periodic function in D and , &, & T
: Ly . Grid - (64.64 Epoch- 2000 Activation: RelLU
are Fourier transform and it’s inverse respectively rid(x, z): (64,64) ' I 10
Pr 1 Batch_size: 30 ayer_width: 128
A projection_width: 32
Fourier Layer 1 » Fourier Layer 2 —> e @ ¢ — Fourier Layer/ —> Ra : 10
Model Loss
............ o [ Tointosy 3.01 validationLos, Fig (Left): FNO model training loss on y-
""" axis (log scale) and epoch step on x-axis
Fourier Layer 55 for 2D RBC problem with moderate
turbulence Ra = 10*. Trained till loss
) ~ 0(107%)
10741 2.0
a 7 Fig (Right): FNO model validation loss
- — 1.51 on y-axis and epoch step on x-axis for 2D
RBC problem with moderate turbulence
10, Ra = 10*. Validation loss ~ O(1071)
10—5_
Fig: Fourier neural operator architecture with input v, lifted to higher channel space by neural network P, passed through Fourier layers and | _ . _
activation function o, then projected back to target dimension by neural network O to give output 1. Fourier layer takes input v’ and applies 0> ﬁ]t'ic‘:g,\\i\ilfvl\;ﬁ 7B1OOSter’ hitps://jlsrt.org/index.phpllst
Fourier transform #, linear transform R on lower Fourier modes, filtering out higher modes; applies inverse Fourier transform F ! then 22500 Y
concatenates the output with local linear transform W which is passed through activation function o. 0 250 500 750 1Sct>'oo 1250 1500 1750 2000 0 250 500 750 1Sct>'oo 1250 1500 1750 2000
ep ep

[5]: https://arxiv.org/abs/2010.08895

FNO Result For 2D RBC
Fort € [0,374.256] (In Training Distribution Data) Fort & [0,374.256] (Out Of Training Distribution Data)

—— Dedalus

L —— Dedal RBC-2D with 64x64 grid and Ra = 10% with inputs at t = 389.99
RBC-2D with 64x64 grid and Ra = 10* with inputs at t =250.5 Fsga He 9 P —e— FNO
_ , Velocity x-component at t=390.25 Velocity z-component at t=390.25 Buoyancy at t=390.25 Pressure at t=390.25
Velocity x-component at t=250.75 Velocity z-component at t=250.75 Buoyancy at t=250.75 Pressure at t=250.75
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Fig: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time ¢ = 250.75 € [0,374.256] on 64 X 64 grid for 2D Fig: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time ¢ = 390.25 & [0,374.256] on 64 X 64 grid for 2D RBC
RBC problem with moderate turbulence Ra = 10*. Dedalus output and FNO model output match with error ~ ©(107°) problem with moderate turbulence Ra = 10*. Dedalus output and FNO model output matches with error ~ G(107>)

* FNO shows promising results for solving two dimensional _ , _ _ _ 4
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