Harnessing Fourier Neural Operator For Rayleigh—-Bénard Convection

Chelsea John*°, Andreas Herten*, Stefan Kesselheim*, Daniel Ruprecht®
*Julich Supercomputing Center, °Technical University of Hamburg

Rayleigh-Béenard Convection (RBC) RBC Model Equations

¢ Natural buoyancy-driven convective motion T T =Ty,(Cold) : . .
occurring in fluid layers due to temperature Applications 7y Dimensionless Equations

gradient 1 ou

® Modelled by incompressible Navier-Stokes | (\QOO(/ % d Fluid E ot

equations under Boussineq approximation \3\)

(u-Vu) =—-Vp+6z+Vu

/
%

x : 00 o,

Rayleigh-Bénard Convection (2D) ‘ : (u * V)e — Ra(u ¢ Z) + V 9
~ ~ ' gBuoyancy att =49.999 T — TO + A(HOt) at

. : ; ; | — =Gy :’_ g V . u p— O

ez —_— Where: v: Kinematic viscosity of fluid
T Y e VR X ¢ —_ . " . .
~ N9 S u = (u, Uy, u,): Flow velocity a: Thermal expansion coefficient

Simulation: Two-dimensional Rayleigh-Bénard convection with _ - 0: Temperature deviation from conduction state K: Thermal diffusivity of fluid
Rayleigh Number Ra = 104 at time t = 49.99, generated using Dedalus Atmospherlc Flows . :
softwarel p: Pressure deviation from conduction state Pr = v/x: Prandtl number

[2]: LumenLearning - The Solar Interior: Theory

[3]: UniversityOfSydney - Geothermal Energy A: Temperature difference between boundaries Ra = poagAd3/ vk : Rayleigh Number

[1]: https://dedalus-project.org/ [4]: MyNasaData - Ocean Circulation Pattern

Fourier Neural Operators (FNO)®! Solving RBC in 2D with FNO

. . e Problem: Given &, (state at ¢), predict &, (state at t' = t + Ot
Neural Operators are able to learn Let v be input vector and u output vector, then deep ’(;) P b r Wh) o
function space mappings neural network with K layer and o; activation has * FNO Model Input: o, = (ux,t’ Uy 1 Pr) ofe. .
l l _ u, . velocity x-component at time ¢
Neural Operator wh trised b the form: » FNO Model Output: & = (i, Uy 1 Py by) i. : velocity z-component at time ¢
® . ’ .) - -
ceural uperalor when parametrised by U= (Kyooy0....00Kyv e Code: Implemented in Python using PyTorch pZ:tpressure at time 7
integral kernel in Fourier space gives o Py 6 a .
_ For Fourier Neural operator, v and u are functions Device: NVIDIAA100 (40GB) GPUEI b,: buoyancy at time ¢
Fourier Neural Operator with discretisation. Let x, y be points in domain D
, I | | Data Card Training Parameters FNO Model Card
e Resolution-invariant then K : v, = v, | is parameterised as: |
Source: Dedalus!] Learning_rate: 0.00039 Fourier layer: 2
e Quasi-linear complexity with FFT V(0 = FHF k) - F(v))(x) + Wy(x), Vx €D Samples: {train:1499, val:1600, test:1600} Optimiser: AdamW x_fourier_modes: 32
| o o ol Initial state, §y= (0, 0, 0, random.normal()) | | Loss: torch.nn.SmoothL 1Loss() z_fourier_modes: 32
Where k is a periodic function in D and , &, & T
: Ly . Grid - (64.64 Epoch- 2000 Activation: RelLU
are Fourier transform and it’s inverse respectively rid(x, z): (64,64) ' I 10
Pr 1 Batch_size: 30 ayer_width: 128
A projection_width: 32
Fourier Layer 1 » Fourier Layer 2 —> e @ ¢ — Fourier Layer/ —> Ra : 10
Model Loss
............ o [Tointosy 3.01 validationLos, Fig (Left): FNO model training loss on y-
""" axis (log scale) and epoch step on x-axis
Fourier Layer 55 for 2D RBC problem with moderate
turbulence Ra = 10*. Trained till loss
) ~ 0(107%)
10741 2.0
a 7 Fig (Right): FNO model validation loss
- — 1.51 on y-axis and epoch step on x-axis for 2D
RBC problem with moderate turbulence
10, Ra = 10*. Validation loss ~ O(1071)
10—5_
Fig: Fourier neural operator architecture with input v, lifted to higher channel space by neural network P, passed through Fourier layers and | _ . _
activation function o, then projected back to target dimension by neural network O to give output 1. Fourier layer takes input v’ and applies 0> ﬁ]t'ic‘:g,\\i\ilfvl\;ﬁ 7B1OOSter’ hitps://jlsrt.org/index.phpllst
Fourier transform #, linear transform R on lower Fourier modes, filtering out higher modes; applies inverse Fourier transform F ! then 22500 Y
concatenates the output with local linear transform W which is passed through activation function o. 0 250 500 750 1Sct>'oo 1250 1500 1750 2000 0 250 500 750 1Sct>'oo 1250 1500 1750 2000
ep ep

[5]: https://arxiv.org/abs/2010.08895

FNO Result For 2D RBC
Fort € [0,374.256] (In Training Distribution Data) Fort & [0,374.256] (Out Of Training Distribution Data)

—— Dedalus

L —— Dedal RBC-2D with 64x64 grid and Ra = 10% with inputs at t = 389.99
RBC-2D with 64x64 grid and Ra = 10* with inputs at t =250.5 Fsga He 9 P —e— FNO
_ , Velocity x-component at t=390.25 Velocity z-component at t=390.25 Buoyancy at t=390.25 Pressure at t=390.25
Velocity x-component at t=250.75 Velocity z-component at t=250.75 Buoyancy at t=250.75 Pressure at t=250.75

0.3 0.4 1

0.3 A

0.3 A

0.3 A1
0.3 1

0.2 A
0.2 A
0.2 A

{

\\,.32&! N
N

8
I

0.2 A 0.2 1

0.1 A

0.1 A " 0.1

0.1 4
0.1 4

; &7

0.0 1 0.0 | el

0.0 1 gadaphetayipfory 0.0 -

o

i

!
J

0.0

—0.1 ~

—0.1- —0.1 A

—0.1 A

—0.1 A
—0.2 A

\
—0.2 - —0.2 1 \\

—-0.2 1

((RE

—0.3 1
_02 -

Sk

—0.3 A —0.3 A

—0.4 - l —0.3 A

T T T T T T T T T T T T T T T T (l) ZIO 4IO GIO (l) 210 4IO 610 (l) 210 410 610 6 210 410 610

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Fig: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time ¢ = 250.75 € [0,374.256] on 64 X 64 grid for 2D Fig: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time ¢ = 390.25 & [0,374.256] on 64 X 64 grid for 2D RBC
RBC problem with moderate turbulence Ra = 10*. Dedalus output and FNO model output match with error ~ ©(107°) problem with moderate turbulence Ra = 10*. Dedalus output and FNO model output matches with error ~ G(107>)

* FNO shows promising results for solving two dimensional _ , _ _ _ 4
Rayleigh-Bénard Convection e Solve Rayleigh-Bénard Convection for high turbulence with Ra > 10 European High-Performance Computing Joint

* FNO model does not give results for initial evolution of and liquids with Pr > 1 or <1 Undertaking (JU) under grant agreement No:

system when Kinetic Energy < @(10—5) e Solve Rayleigh-Béenard Convection in three dimensions 101118139. The JU receives support from the
e Optimise memory storage European Union’'s Horizon Europe Programme.
Compute time on the GCS Supercomputer
JUWELS Booster at JSC is provided through the
Gauss Center for Supercomputing e.\V.

This project has received funding from the

e \erification through Dedalus (PDE solver
) () e Optimise dense convolution in Fourier space

* |[mplement parallel training strategies

*
*
*

" Funded by —x T
J U LICH the European Union E: **3
Forschungszentrum p t * 4ok j

Technische Universitat Hamburg

https://courses.lumenlearning.com/suny-astronomy/chapter/the-solar-interior-theory/
https://www.petroleum.sa.gov.au/?a=747857
https://mynasadata.larc.nasa.gov/basic-page/ocean-circulation-patterns
https://arxiv.org/abs/2010.08895
https://dedalus-project.org/
https://jlsrf.org/index.php/lsf/article/view/171
https://jlsrf.org/index.php/lsf/article/view/171

