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• Natural buoyancy-driven convective motion 
occurring in fluid layers due to temperature 
gradient  

• Modelled by incompressible Navier-Stokes 
equations under Boussineq approximation

Rayleigh-Bénard Convection (RBC) RBC Model Equations
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Where: 
• : Flow velocity  

• :  Temperature deviation from conduction state 
• : Pressure deviation from conduction state 
• : Temperature difference between boundaries  

u = (ux, uy, uz)
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• : Kinematic viscosity of fluid 
• : Thermal expansion coefficient  
• : Thermal diffusivity of fluid 
• :  Prandtl number 
•  : Rayleigh Number
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Dimensionless Equations

Simulation: Two-dimensional Rayleigh–Bénard convection with 
Rayleigh Number Ra = 104 at time t = 49.99, generated using Dedalus 
software[1]

Applications
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[2]: LumenLearning - The Solar Interior: Theory
[3]: UniversityOfSydney - Geothermal Energy
[4]: MyNasaData - Ocean Circulation Pattern

Fourier Neural Operators (FNO)[5]

• Neural Operators are able to learn 
function space mappings 

• Neural Operator when parametrised by 
integral kernel in Fourier space gives 
Fourier Neural Operator 

• Resolution-invariant 

• Quasi-linear complexity with FFT

u = (Kl ∘ σl ∘ . . . . ∘ σ1 ∘ K0)v

Let  be input vector and  output vector, then deep 
neural network with  layer and  activation has 
the form:
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For Fourier Neural operator,  and  are functions 
with discretisation. Let  be points in domain  
then  is parameterised as:
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K : vt ↦ vt+1

vt+1(x) = ℱ−1 (ℱ(k) ⋅ ℱ(vt))(x) + Wvt(x), ∀x ∈ D

Where  is a periodic function in  and ,  
are Fourier transform and it’s inverse respectively
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Fig: Fourier neural operator architecture with input , lifted to higher channel space by neural network , passed through Fourier layers and 
activation function , then projected back to target dimension by neural network  to give output . Fourier layer takes input  and applies 
Fourier transform , linear transform  on lower Fourier modes, filtering out higher modes; applies inverse Fourier transform  then 
concatenates the output with local linear transform  which is passed through activation function .
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[5]: https://arxiv.org/abs/2010.08895

Solving RBC in 2D with FNO
• Problem: Given  (state at ), predict  (state at ) 

• FNO Model Input:   

• FNO Model Output:  
• Code: Implemented in Python using PyTorch 
• Device: NVIDIA A100 (40GB) GPU[6]

𝒮t t 𝒮t′ t′ = t + δt
𝒮t = (ux,t, uz,t, pt, bt)

𝒮t′ = (ux,t′ , uz,t′ , pt′ , bt′ )

Data Card 
Source: Dedalus[1]  

Samples: {train:1499, val:1600, test:1600} 

Initial state, = (0, 0 , 0, random.normal()) 

Grid(x, z): (64,64)  
Pr: 1 

Ra: 104

𝒮0

[1]: https://dedalus-project.org/

FNO Model Card 
Fourier_layer: 2 

x_fourier_modes: 32 
z_fourier_modes: 32 

Activation: ReLU 
layer_width: 128 

projection_width: 32

Training Parameters 
Learning_rate: 0.00039 

Optimiser: AdamW 
Loss: torch.nn.SmoothL1Loss() 

Epoch: 2000 
Batch_size: 30

Where: 
: velocity x-component at time  
: velocity z-component at time  

: pressure at time  
: buoyancy at time 
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Fig (Left): FNO model training loss on y-
axis (log scale) and epoch step on x-axis 
for 2D RBC problem with moderate 
turbulence . Trained till loss 

 

Fig (Right): FNO model validation loss 
on y-axis and epoch step on x-axis for 2D 
RBC problem with moderate turbulence 

. Validation loss  

Ra = 104

≈ 𝒪(10−6)

Ra = 104 ≈ 𝒪(10−1)

FNO Result For 2D RBC
For  (In Training Distribution Data) t ∈ [0,374.256] For  (Out Of Training Distribution Data) t ∉ [0,374.256]

Fig: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time  on  grid for 2D 
RBC problem with moderate turbulence . Dedalus output and FNO model output match with error  

t = 250.75 ∈ [0,374.256] 64 × 64
Ra = 104 ≈ 𝒪(10−5)

Fig: Velocity, Buoyancy and Pressure output of FNO model against Dedalus result at time  on  grid for 2D RBC 
problem with moderate turbulence . Dedalus output and FNO model output matches with error  

t = 390.25 ∉ [0,374.256] 64 × 64
Ra = 104 ≈ 𝒪(10−5)

Conclusion Next Steps Acknowledgements
• FNO shows promising results for solving two dimensional 

Rayleigh-Bénard Convection 
• FNO model does not give results for initial evolution of 

system when Kinetic Energy <  
• Verification through Dedalus (PDE solver) 

𝒪(10−5)

• Solve Rayleigh-Bénard Convection for high turbulence with  
and liquids with  or   

• Solve Rayleigh-Bénard Convection in three dimensions 
• Optimise memory storage  
• Optimise dense convolution in Fourier space 
• Implement parallel training strategies 

Ra > 104

Pr > 1 < 1

[6]: JUWELS Booster, https://jlsrf.org/index.php/lsf/
article/view/171
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