001029114 001__ 1029114
001029114 005__ 20250203133150.0
001029114 0247_ $$2doi$$a10.1142/S0129065724500527
001029114 0247_ $$2ISSN$$a0129-0657
001029114 0247_ $$2ISSN$$a1793-6462
001029114 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04970
001029114 0247_ $$2pmid$$a38989919
001029114 0247_ $$2WOS$$aWOS:001265884500001
001029114 037__ $$aFZJ-2024-04970
001029114 082__ $$a610
001029114 1001_ $$00000-0002-5622-7410$$aRoecher, Erik$$b0$$eCorresponding author
001029114 245__ $$aMotion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks
001029114 260__ $$aSingapore [u.a.]$$bWorld Scientific Publ. Co.$$c2024
001029114 3367_ $$2DRIVER$$aarticle
001029114 3367_ $$2DataCite$$aOutput Types/Journal article
001029114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724399496_23126
001029114 3367_ $$2BibTeX$$aARTICLE
001029114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029114 3367_ $$00$$2EndNote$$aJournal Article
001029114 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001029114 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029114 7001_ $$00000-0002-0041-2879$$aMösch, Lucas$$b1
001029114 7001_ $$00000-0002-5724-1054$$aZweerings, Jana$$b2
001029114 7001_ $$00000-0002-4232-8878$$aThiele, Frank O.$$b3
001029114 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b4
001029114 7001_ $$00000-0002-8816-3415$$aGaebler, Arnim Johannes$$b5
001029114 7001_ $$0P:(DE-HGF)0$$aEisner, Patrick$$b6
001029114 7001_ $$00000-0002-6903-7974$$aSarkheil, Pegah$$b7
001029114 7001_ $$00000-0002-2276-7726$$aMathiak, Klaus$$b8
001029114 773__ $$0PERI:(DE-600)1498197-X$$a10.1142/S0129065724500527$$gp. 2450052$$n10$$p2450052$$tInternational journal of neural systems$$v34$$x0129-0657$$y2024
001029114 8564_ $$uhttps://juser.fz-juelich.de/record/1029114/files/roecher-et-al-2024-motion-artifact-detection-for-t1-weighted-brain-mr-images-using-convolutional-neural-networks.pdf$$yOpenAccess
001029114 8564_ $$uhttps://juser.fz-juelich.de/record/1029114/files/roecher-et-al-2024-motion-artifact-detection-for-t1-weighted-brain-mr-images-using-convolutional-neural-networks.gif?subformat=icon$$xicon$$yOpenAccess
001029114 8564_ $$uhttps://juser.fz-juelich.de/record/1029114/files/roecher-et-al-2024-motion-artifact-detection-for-t1-weighted-brain-mr-images-using-convolutional-neural-networks.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029114 8564_ $$uhttps://juser.fz-juelich.de/record/1029114/files/roecher-et-al-2024-motion-artifact-detection-for-t1-weighted-brain-mr-images-using-convolutional-neural-networks.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029114 8564_ $$uhttps://juser.fz-juelich.de/record/1029114/files/roecher-et-al-2024-motion-artifact-detection-for-t1-weighted-brain-mr-images-using-convolutional-neural-networks.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029114 909CO $$ooai:juser.fz-juelich.de:1029114$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001029114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b4$$kFZJ
001029114 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001029114 9141_ $$y2024
001029114 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001029114 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029114 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001029114 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J NEURAL SYST : 2022$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001029114 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J NEURAL SYST : 2022$$d2024-12-06
001029114 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001029114 980__ $$ajournal
001029114 980__ $$aVDB
001029114 980__ $$aUNRESTRICTED
001029114 980__ $$aI:(DE-Juel1)INM-1-20090406
001029114 9801_ $$aFullTexts