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Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise,
contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the
expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning
based on convolutional neural networks (CNNs) is a promising approach to address these challenges by
performing automated inspection of MR images. In this study, a CNN for the detection of random head
motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach
aimed to ¯rst identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of
a more detailed three-class classi¯cation. The utilized dataset consisted of 420 T1-weighted whole-brain image
volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact
prominence. Results demonstrate an accuracy of 95% for the identi¯cation of images with pronounced artifact
load. The addition of an intermediate class retained an accuracy of 76%. The ¯ndings highlight the potential
of CNN-based approaches to increase the e±ciency of post-hoc QAs in large datasets by °agging images with
potentially relevant artifact loads for closer inspection.
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1. Introduction

Magnetic resonance imaging (MRI) is central to

many clinical and research applications due to high

spatial resolution of the assessed structures. These

high-resolution images are susceptible to noise, con-

trast, inhomogeneity, and further imaging artifacts

that may impact image quality. Thus, image quality

is not readily quanti¯able within a single metric and

the de¯nition of acceptable image quality heavily

depends on the speci¯c application (i.e. the brain

regions of interest, sample size or analysis type).

Nevertheless, quality assurance (QA) is a key aspect

of reliable medical diagnosis and analysis of imaging

data. Quality assessment (QA) should be reproduc-

ible, objective, and accessible.1 In this study, a deep

learning algorithm for the classi¯cation of visually

detectable motion artifacts as one key aspect of

image quality is established and optimized. The

presented approach shows high accuracy for the

identi¯cation of images with pronounced motion

artifacts and thus, can be used to \°ag" respective

images for further visual inspection. In addition, the

pipeline was integrated as a ¯rst use case for

data quality assurance at a local database for MR

imaging.

Random head motion artifacts (RHM) are among

the most common visual artifacts encountered in

clinical routine imaging and MR studies. RHM typ-

ically appear as circular-shaped patterns of wave-like

changes in brightness in T1-weighted images. These

artifacts are foremost caused by increased head

motions of participants due to extensive breathing,

body motion, or illness-related unrest. RHM poses

several potential problems for the utilization of the

acquired data. Most studies investigating MRI mo-

tion artifacts focus on functional MR imaging.2,3

Siegel and colleagues demonstrated a statistically

signi¯cant improvement of BOLD signal in task-

based fMRI when correcting for motion, while Power

and colleagues linked subject motion to changes in

the time courses of resting state functional connec-

tivity.2,3 For structural imaging, Reuter and collea-

gues systematically investigated the impact of head

motion on morphometric estimates of brain struc-

tures and showed that reduced image quality a®ects

grey matter volume and thickness estimates.4

The authors conclude that head motion introduces a

bias in the data that can potentially lead to the

overestimation of e®ects when groups with di®erent

movement susceptibility are compared. In a similar

vein, Blumenthal and colleagues showed that greater

motion artifacts are associated with smaller esti-

mates of grey matter volume.5 Du®y and colleagues

indicate signi¯cant changes in cortical thickness

estimates after motion correction.6 Here, more

widespread cortical thinning was found after apply-

ing their convolutional neural network (CNN) based

correction. An extensive review of clustering

approaches for MRI by Mirzaei and Adeli highlights

the impact of image artifacts and noise on the per-

formance of clustering algorithms.7 While time series

measurements such as resting-state provide move-

ment parameters, which allow estimates for move-

ment intensity,8 there are no comparable indicators

available in structural imaging. The application of

¯ducial markers such as re°ective markers tracked

by infrared cameras or radio frequency coil markers

tracked during image acquisition has been proposed

to monitor motion9 and provide motion compensa-

tion.10,11 However, ¯ducial markers require a prior

setup, rendering a retrospective analysis, e.g. of large

databases, impossible and are furthermore unable to

fully eliminate motion artifacts. Yet, data analysis

may be sensitive to these artifacts,4 which are easily

missed in short visual inspections. Thus, automatic,

and hence, user-independent procedures for struc-

tural imaging are a promising approach to present a

fast and accurate feedback of speci¯c aspects of data

quality that can prompt further inspection, and if

indicated, immediate repetition of structural

imaging.

In the last decade, arti¯cial neural networks and

deep learning have gained major attention in the

computer vision community and beyond.12–14 These

methods surpassed traditional machine learning

methods in a variety of tasks, especially in complex

pattern recognition, and yield great potential in

medical imaging.17–20 Accordingly, CNNs provide a

promising algorithmic foundation for the automated

classi¯cation of RHM that manifests as a complex

pattern in MR images. So far, most studies focus on

either an overall image quality classi¯cation incor-

porating motion, noise and contrast into a single

quality metric or the correction of artifacts. Bottani

et al. applied a CNN approach on a set of 5500

manually labeled T1-weighted images to distinguish
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good, intermediate, and bad quality.21 Image quality

labels combine noise, motion, and contrast in a single

label. The accuracy of the detection of low-quality

images was 83%. The authors note that with their

annotation process it may be di±cult to distinguish

where image degradation appeared. Especially mo-

tion and noise may be confused. Keshavan and col-

leagues used the Healthy Brain Network dataset

with an existing quality label and adapted a VGG16

image classi¯cation CNN.22 The authors predicted

expert quality ratings using available crowd-sourced

ratings on a scale from 0 (fail) to 1 (pass) with a high

match indicated by an AUC of 0.99. Few studies

applied deep learning to detect motion artifacts

speci¯cally. Küstner et al. successfully trained a CNN

on patches of cranial T1-weighted images to detect

volitionally induced motion artifacts on 16 healthy

volunteers.23 Participants were instructed to delib-

erately tilt their heads to induce motion artifacts

(motion-a®ected dataset) or to remain still (motion-

free dataset). Due to the limited sample size, they

applied a leave-one-out approach with a detection

rate of 100% and cross-validated with abdominal

images, leading to an accuracy of 82%.23 Extending

their work, they applied a Generative Adversarial

Network (GAN) for motion artifact correction.24

However, the authors stress that anatomical features

may be altered, or hidden, and clinical application

needs to be evaluated. Further, retrospective head

motion artifact correction using deep learning 3D

CNN was proposed by Du®y et al. on structural

images of 864 participants.6 Al-Masni and colleagues

introduced stacked U-Nets, trained on the clinical

data of 83 participants with arti¯cially created mo-

tion artifacts for artifact correction in structural

images.25 Although retrospective correction of mo-

tion artifacts may be a suitable solution for existing

datasets, methods that support initial artifact de-

tection can prompt repetition of scans if feasible and

are thus promising in terms of reducing the need for

post-hoc arti¯cial data enhancement that may be

associated with the risk of distortion of the originally

acquired data.

In this study, an investigation was conducted

whether CNNs are feasible candidates for RHM de-

tection in structural MRI in a large population-based

dataset, aimed to identify and °ag potentially

critical images. The applicability of deep learning for

the classi¯cation of images showing no visible versus

pronounced motion artifacts was explored and rele-

vant arti¯cial neural network topologies for this

classi¯cation task were established. Further, we ex-

plored the possibility of extending our approach by

integrating an intermediate class of moderate arti-

fact prominence. The generalizability of our trained

neural networks was assessed on an independent

dataset and applicability was demonstrated on our

in-house neurofeedback database.

2. Methods

2.1. Overview

The main objective of the presented approach was to

identify images exhibiting pronounced motion arti-

facts. Automated detection of motion artifacts in

MRI can be used to °ag potentially critical images

and prompt suitable actions by clinicians or study

sta®. Further, if applied during the scanning it

would allow for the rapid and automatic identi¯ca-

tion of images that might require reacquisition. To

achieve this goal, a set of CNNs was implemented,

performing a two-class classi¯cation of T1-weighted

MR images with no visible artifacts and images

with pronounced motion artifacts (as detailed in

Sec. 2.6.). These networks were trained to achieve

high accuracy and low false-negative rates. Further

extending this work, we investigated the feasibility

of a more detailed classi¯cation by introducing

an additional intermediate-artifact-load class. This

three-class classi¯cation task is performed by

an ensemble of CNNs, which is also detailed in

Sec. 2.6.

2.2. Dataset

Training dataset

For training and validation of the networks, an

existing dataset of T1-weighted images originating

from the 1000BRAINS study26 was used. The primary

aim of this study was to investigate the structural and

functional variabilities in the human brain during

aging. A population-based study was chosen to ensure

a realistic representation of the data quality.

Out of the available data (for details, see Ref. 26),

420 T1-weighted brain images (see below) with an

Motion Artifact Detection for T1-Weighted Brain MR Images
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isotropic resolution of one millimeter were selected

for a balanced representation of artifact prominence

(scanning parameters: repetition time TR ¼ 2.25 s,

echo time TE ¼ 3.03ms, TI ¼ 900ms, ¯eld of view

FoV ¼ 256� 256mm2, °ip angle ¼ 9�). All images

were acquired using the same 3T whole-body MR

scanner (Tim-TRIO, Siemens Medical Systems,

Erlangen, Germany).

An additional set of T1-weighted images of 19

participants was acquired in our in-house three Tesla

MR Scanner (Tim-TRIO, Siemens Medical Systems,

Erlangen, Germany) with identical imaging para-

meters as for the 1000BRAINS study. In a series of

measurements, participants were instructed to either

refrain from moving to ensure high image quality or

to apply several methods to induce motion artifacts

such as pronounced breathing, severe eye move-

ments, and using one foot to \write" their name in

the air to ensure prolonged physical activity.

Accordingly, the acquired data contains images of

the same participant with di®erent levels of artifact

prominence. This approach was chosen to reduce the

risk of learning based on individual subject-speci¯c

anatomical characteristics rather than actual artifact

detection.

Generalizability dataset

To assess the generalizability of the approach, we

evaluated the performance of the network on an in-

dependent dataset that was acquired as part of a

randomized clinical trial, hence, including both, data

of patients (N ¼ 53) and healthy controls (N ¼ 22).

This generalizability dataset consisted of images ac-

quired with identical sequence parameters and la-

beled following the same expert rating approach as in

the training dataset. Thereof, 75 images were se-

lected and distributed equally across the three classes

to prevent class imbalances.

Neurofeedback database

As a use case for the classi¯cation of motion artifacts,

we applied the created networks on an independent

research dataset containing both patients and heal-

thy individuals (N ¼ 87 patients; N ¼ 94 healthy

individuals). The data was not labelled by experts.

The parameters for the high-resolution T1 images for

the included datasets were: 1mm isotropic voxel

resolution, repetition time TR ¼ 2.00 s, echo time

TE ¼ 3.03ms, TI ¼ 900ms, ¯eld of view

FoV ¼ 256� 256mm2, °ip angle ¼ 9� for 139 par-

ticipants. For the remaining 42 participants the

scanning parameters slightly di®ered: 1mm isotropic

voxel resolution, repetition time TR ¼ 2.30 s echo

time TE ¼ 2.98ms, ¯eld of view FOV ¼
256� 256mm2, TI ¼ 900ms, °ip angle ¼ 9�. All

images were acquired using the same 3T whole-body

MR scanner (Tim-TRIO, Siemens Medical Systems,

Erlangen, Germany).

2.3. Image volume annotation

Manual image QA of all images was performed by

two trained experts under the supervision of the QA

team of the Psychiatric Imaging Network Germany

(PING).27 Each image volume was assigned to one of

three classes indicating RHM prominence. Class 0

was de¯ned as images without visibly detectable

motion artifacts throughout the brain; Class 1

re°ected images with moderate motion artifacts in at

least one image slice; Class 2 comprised images with

pronounced motion artifacts. Importantly, image

volumes retained only one single annotation for the

entire volume, even when artifacts were only visible

within isolated slices. In case of interrater con°ict

regarding image assignment (i.e. the same image

volume was assigned to di®erent classes by the

raters), a supervisory decision was obtained from a

QA expert of the PING consortium resulting in one

annotation of each image volume. For an exemplary

image in each of the three classes see Fig. 1. The

additional image volumes acquired in our in-house

MR scanner were rated following the same proce-

dure. Inter-rater reliability between rater A and

rater B prior to a supervisory decision by trained QA

expert on the two-class annotation yielded a Cohen's

kappa of � ¼ 0:72 and for the three-class annotation

a Cohen's kappa of � ¼ 0:52.28

Annotated images were randomly selected from

the whole pool of images to create a dataset with a

matched number of images per class to prevent

trained networks to favor a speci¯c class. This ¯nal

dataset was consistent throughout all further anal-

ysis, training, and validation. Each class in this

dataset contained 140 volumes resulting in a dataset

with a total number of 420 image volumes. Mean age

of participants included was 61.04y (� 12.74y SD)

E. Roecher et al.
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with a slightly increasing mean age alongside in-

creasing artifact prominence (57.25y � 12.65y SD;

61.29y � 13.05y SD; 64.97y � 11.25y SD). In total,

231 male and 189 female participants were included.

2.4. Pre-processing and data augmentation

Head localization, rotation, and individual head sizes

and shapes di®er in standard MRI acquisition. Fur-

ther, the general image intensity might di®er be-

tween participants. These factors may introduce

biases in the machine learning process. Therefore,

consistent pre-processing steps and anatomical nor-

malization were performed before images entered

network training. These steps included bias ¯eld

correction using SPM 1229 and co-registration to a

MNI template using an Euler transform (translation

and rotation). Co-registration was applied to ensure

that heads are centered and aligned in all T1w

images. Images retained their 1mm isotropic voxel

resolution and received the MNI reference image

resolution of 181� 217� 181 voxel. These processed

3D images represented each subject.

Image augmentation techniques were applied

online during the training of individual networks to

compensate for over¯tting. These data augmenta-

tion techniques included rotation, scaling, and

shearing. Each technique was applied by a random

degree within a pre-set range with the value ranges

detailed in the results section.

2.5. Network training parameter

The core training framework was written in the

programming language Python (version 3.7.330)

using the machine learning software libraries Ten-

sor°ow (version 1.14.031) and Keras (version 2.2.4).

If not reported otherwise, default parameters of

Tensor°ow and Keras were applied.

Training and evaluation of all networks was per-

formed using ¯ve-fold cross-validation. Therefore,

the full dataset was split into ¯ve consistent parts

with an equal number of images in each class. Each

part served once as a validation set and was part of

the training set in the remaining four cross-valida-

tion trainings. The weights and bias variables of each

trained network were initialized using He normal

distribution.32 These initialized variables were stored

and reused in each of the ¯ve trainings, which en-

sured an equal starting point for each training-split.

All convolutional layers employ a Recti¯ed Linear

Unit (ReLU) activation function.33The batch sizewas

set to 5 with an initial learning rate of 1e� 5 and a

reduction until 1e� 6 during training for all trainings,

unless otherwise speci¯ed. Optimization was per-

formed by an Adam optimizer, using a cross-entropy

loss function. The training was stopped after twenty

epochs without decreased loss. Reported results rep-

resent the calculated mean over all ¯ve cross-valida-

tion runs. Hyperparameter values reported here were

a result of a grid search approach and were chosen as

the best-performing parameters as measured by pre-

diction accuracy using cross-validation.

Fig. 1. Exemplary illustration of the three-class classi¯-
cation of head motion artifact prominence in transversal
image slices. Motion artifacts can be most readily identi¯ed
at contrast edges. (a) Top row: Class 0 denotes no visible
motion artifacts. (b) Middle row: Class 1 images show
moderate motion artifacts in at least one slice and (c)
Bottom row: Class 2 contains images with pronounced
motion artifacts visible in all slices. Right column shows
zoomed in representations of each example.

Motion Artifact Detection for T1-Weighted Brain MR Images
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2.6. Network topology

The investigation aimed to separate the T1-weighted

images based on the prominence of visible motion

artifacts. A two-step approach was implemented to

achieve this goal. First, an initial network was

trained on stacks of consecutive image slices. Each

stack inherited the label of its parent image volume.

Accordingly, the output of this network was a pre-

diction of artifact load in a single stack (Fig. 2).

Second, a subsequent network was trained to predict

overall artifact load from all stacks belonging to one

image volume. This work°ow is illustrated in Fig. 3.

Stack network

From each 3D volume, stacks were extracted as con-

secutive transversal slices between slice 90 and slice

150. This range ensures optimal brain and hence, ar-

tifact coverage in all slice stacks. The number of slices

in each stack acts as a hyperparameter during the

optimization of the CNNs. It was a ¯xed parameter

that determined the amount of image data fed into the

CNNs simultaneously. Smaller stacks may lead to

stacks containing no artifacts for images that contain

artifacts in other slices while larger stacks may lead to

decreased learning performance due to increased

complexity of network input. Accordingly, this pa-

rameter balanced the probability of artifact detection

within a single stack and learning performance. Stack

size was set to 5 for two-class classi¯cations and either

10 or 20 for three-class classi¯cations. The stride size

between stacks was one.

All slices of a stack were zero-padded to a size of

232� 232 and individually min-max normalized

Inorm ¼ I�Imin

Imax�Imin
, with Inorm being the normalized

voxel intensity of a Voxel I and Imin and Imax being

the minimum and maximum values in the stack.

Augmentation techniques were applied equally to all

slices in a stack (e.g. all slices in a stack are rotated

by the same degree).

Our stack networks consisted of multiple blocks of

two successive 2D convolutional (conv2D) layers

with an identical number of channels followed by one

max-pooling layer. Convolutional layers utilize

image convolution with trainable ¯lter kernels,

which are trained to highlight relevant features and

structures in their input. The kernel size of both

conv2D layers was set to 3� 3 and the kernel size of

the max-pooling layer was set to 2� 2. This results

in a factor two resolution reduction after each block.

The number of blocks and the number of channels in

each block varied across di®erent networks. The last

block's output was °attened and fed into a set of

fully connected (FC) layers, each with a dropout-

rate of 0.4.34 The ¯nal layer of a stack network was a

softmax layer with either two or three neurons,

depending on the number of classes, which outputs a

prediction probability for each class. For an overview

of all network parameters see Table 1.

Fig. 2. The ¯gure illustrates the slice-stack extraction from a T1-weighted volume and the CNNs network topology. Extracted
slice stacks are fed into a sequential CNN consisting of four pairs of convolutional layers. Each pair used identical parameters
and was followed by one max-pooling layer. The ¯nal convolutional layer was °attened and fed into two FC layer and a ¯nal
softmax classi¯cation layer, resulting in a prediction of motion artifact prominence for each respective stack. Depicted values for
layer sizes are exemplary. For speci¯c values see Tables 1 and 2.
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Class weights were introduced to improve the ini-

tially observed class imbalance in network predictions.

Weighting factors of 2.0, 4.0, and 1.0 for imageswith no

visible, moderate, and more pronounced artifact

prominence were selected. These values were chosen to

emphasize learning of a correct classi¯cation of our

intermediate class by assigning a larger weighting fac-

tor to the class's loss term during training. Choosing a

larger weight leads to a larger impact of that speci¯c

class on the overall loss during training. Class weights

were used exclusively during the training of stack net-

works performing a three-class classi¯cation. Class

weighting was not applied during the validation phase

and had no impact on model predictions.

Volume network

The volume network was trained to pool all stack

predictions into a ¯nal volume-wise prediction of ar-

tifact prominence. The input of this network consisted

of a matrix sized 55� 2 for the two-class classi¯cation

and 55 � 3 for the three-class classi¯cation, respec-

tively. These matrices contained the predicted classi-

¯cation probabilities for 55 stacks extracted from one

image volume (stacks of 5 slices extracted in a slice

range of 90–150 with a stride size of 1).

A volume network for the two-class classi¯cation

consisted of multiple FC layers with a dropout rate

of 0.35 and a ¯nal softmax classi¯cation layer, which

outputs a probability for each class. Network para-

meters are listed in Table 1.

Additionally, an ensemble network for the three-

class classi¯cation was implemented. This network

received outputs from three di®erent stack networks

simultaneously, to facilitate recognition of underly-

ing patterns in stack network predictions.

3. Results

The results are grouped according to the two- and

three-class classi¯cation approaches. For each clas-

si¯cation results are listed separately for stack and

volume networks.

3.1. Two-class classi¯cation

The two-class classi¯cation aimed at distinguishing

images with no visible artifacts from those with more

pronounced artifacts.

Stack network

On the slice-stack level, the network had an average

classi¯cation accuracy across the ¯ve splits in

the cross-validation approach of 0.92 (� 0.03).

Accordingly, the probability that the network assigns

the correct class to a given stack was 92%. Since stacks

were evaluated separately, their predicted class could

Fig. 3. Illustration of the pre-processing and data °ow. Image volumes were bias ¯eld corrected, co-registered and slice stacks
of varying size were extracted. The extracted stacks were normalized and underwent image augmentation including 10�

rotation. Zero-padding to size of 232 � 232 was performed. Stacks entered a stack-based classi¯cation network, which outputs
one prediction probability for each class. All stack predictions of a single image volume then entered a second network, which
returns a ¯nal prediction probability for the image volume.

Motion Artifact Detection for T1-Weighted Brain MR Images
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vary across a volume even though the training label

was the same across the entire volume.

Volume network

Of ¯nal relevance is the accuracy for each volume

integrated across the respective slice stacks. In the

volume network, the predictions from the stacks

were aggregated to form a single quality prediction

for the whole volume (see Table 1). The accuracy

of the quality prediction for the volume was 0.95

(� 0.01). Importantly, simply computing the mean

of the predictions from the stack network resulted in

a lower accuracy (0.93). Hence, the network seems to

recognize underlying patterns that extend predic-

tions solely based on the stacks.

3.2. Three-class classi¯cation

The same method as for the two-class classi¯cation

was chosen with the addition of an intermediate class

comprising images with moderate artifact load.

Stack network

At the ¯rst level, the predictors from slice stacks

were computed. Three di®erent stack networks were

modelled with di®erent parameters for number of

slices and resampling (see Table 2). The networks

had very similar accuracy (Network 1: 0.69 � 0.03; 2:

0.68 � 0.03; and 3: 0.69 � 0.02). Even when con-

sidering the theoretical chance level of 0.33, the

predictions were clearly lower than in the two-class

model.

Table 1. Stack and volume network three-class classi¯cation.

Stack-network two-class classi¯cation

Stack parameter Slice interval 90–150 Rotation range 5
Stack size 5 Normalization min–max
Stack stride 1 Optimizer Adam
Slice axis Transversal Learning rate 1e� 5
Padding shape 232 � 232 Loss Categorial cross-entropy
Resample slice No Initializer He-normal

Network parameter Stack-accuracyConv layer 2 � 4 mean (SD) 0.92 (0.03)

Conv channel 64–256–128–256 split 1 0.96
FC dropout 0.4 split 2 0.94
FC layer 2 split 3 0.89
FC neurons 512–512 split 4 0.94

split 5 0.88

Volume-network two-class classi¯cation

Volume network Input: stack pred 110: 55 stacks �a 2 classes FC layer input 2 � 25
Dropout rate 0.25 Learning rate 1e� 5
Optimizer Adam Loss Categorical cross-entropy

Accuracy Statistics Accuracy volume network

Volume-accuracy mean (SD) 0.93 (0.03) mean (SD) 0.95 (0.02)
split 1 0.96 split 1 0.98
split 2 0.95 split 2 0.96
split 3 0.89 split 3 0.91
split 4 0.96 split 4 0.96
split 5 0.89 split 5 0.95

The Table provides an overview over network parameter and network accuracy of the two-class classi¯cation for
the stack network (top half), as well as network parameter and network accuracy of the volume network (bottom
half). Accuracy is presented as mean value and standard deviation (SD) across all ¯ve splits with a comparison of
computing the mean across all stack predictions (left side) with the accuracy of the volume network (right side).

E. Roecher et al.
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Volume network

In parallel to the stack network computations, one

volume network was trained on the output of all

three stack networks simultaneously. Hence, one

single-volume network with the input of three dif-

ferent stack networks was created. Stack network

predictions were preprocessed on individual network

paths in the volume network, comprising of two FC

layers with 64 neurons. Preprocessing paths were

merged and further processed by two FC layers with

256 and 128 neurons, respectively, and a ¯nal soft-

max classi¯cation layer. During training, dropout

was applied to all FC layers with a dropout rate of

0.35. This ensemble network reached a ¯nal network

performance of 0.76 (� 0.04).

Notably, the accuracy of this volume network was

much higher compared to simply computing the mean

across all stack predictions of each stack network, and

then forming amajority vote based on the mean across

the network predictions to assign a class (0.67;� 0.06;

see Table 3). Hence, our volume network improved

accuracy by 10%. In addition, precision and recall was

calculated by class. Precision of a class X was given by

precisionClassX ¼ TPClassX=ðTPClassX þ FPClassXÞ and

recall was given by recallClassX ¼ TPClassX=

ðTPClassX þ FNClassXÞ. TP and FP were all true posi-

tives and false positives within the prediction of class X

andFNwereall falsenegativeswithin classX.Precision

by class for the ensemble network was 0.75, 0.68, and

0.83 (class 0: no visible motion artifacts, class 1: mod-

erate motion artifacts, class 2: pronounced motion

Table 2. Stack networks three-class classi¯cation.

Stack-networks three-class classi¯cation

Network 1 Network 2 Network 3

Stack parameter Slice interval 90–150 90–150 90–150
Stack size 20 0 20
Stack stride 1 1 1
Slice axis transversal transversal transversal
Padding shape 232 � 232 232 � 232 232 � 232
Resample slice 116 � 116 No No

Training parameter Rotation 10 10 10
Normalization min–max min–max min–max
Optimizer Adam Adam Adam
Learning rate 1e�5 1e�5 1e�5
Loss Categorial cross-entropy Categorial cross-

entropy
Categorial cross-entropy

Initializer He-normal He-normal He-normal

Network parameter Conv layer 2 � 4 2 � 4 2 � 4
Conv channel 64–256–256–512 64–256–256–512 64–256–256– 512
FC dropout 0.4 0.4 0.4
FC layer 2 2 2
FC neurons 512–512 512–512 512–512

Stack-accuracy mean (SD) 0.69 (0.03) 0.68 (0.03) 0.69 (0.02)
split 1 0.70 0.70 0.69
split 2 0.68 0.68 0.67
split 3 0.69 0.65 0.68
split 4 0.73 0.72 0.72
split 5 0.63 0.63 0.66

The table provides an overview over network parameters and prediction accuracy of the three-class classi¯cation of three
stack networks. Each column represents one individual stack network. The ¯rst section shows values chosen for the stack
input of the networks. The second section shows parameters chosen for training, while the third section presents the
topology of the individual networks including convolutional (conv) layer sizes and FC layer sizes. Finally, the last section
displays the accuracy of each stack network per split and as mean value and SD across all ¯ve splits.

Motion Artifact Detection for T1-Weighted Brain MR Images
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artifacts) and recall by class was 0.81, 0.59, 0.88 in the

same order as precision.

3.3. Generalizability

For the two-class classi¯cation our ¯ndings indicate

good generalizability on our independent dataset (for

details see Sec. 2.2. generalizability dataset). On aver-

age across all ¯ve splits, 24 images with pronounced

artifact load were correctly classi¯ed. In addition, 15 of

25 imageswithout visible artifactswere identi¯ed. This

two-class classi¯cationCNNwas not trained on images

with moderate artifact load and can therefore not

predict the intermediate class. However, it is note-

worthy thatout of the 25 imageswithmoderate artifact

load, 17were classi¯ed as images with artifact load and

8as imageswithoutvisible artifacts.This indicates that

the network has a high sensitivity for artifact detection.

Accordingly, image classi¯cation is likely conservative.

For the three-class classi¯cation, accuracy on vol-

ume level was 49% across splits with the best perfor-

mance split of 60%. Accordingly, generalizability is

above statistical and empirical chance level. Notably,

23.2out of25 imagesbelonging to class 2were identi¯ed

correctly, indicating a high accuracy for heavy artifact

detection (93%). Approximately half of the images in

class 0 were assigned to class 1 while half of the images

in class 1 were assigned to class 2 further indicating

conservative image classi¯cation of the network.

As a ¯rst use case we applied our trained net-

works on an independent large database (see

Sec. 2.2. neurofeedback database). Out of a total of

181 T1-weighted images, ¯ve were classi¯ed as ima-

ges showing more pronounced motion artifacts. Vi-

sual inspection of these images con¯rmed the

network classi¯cation, indicating the feasibility of

network-assisted motion artifact detection.

3.4. Impact of age and gender on motion
artifacts

A weak positive correlation emerged between age

and manual rated RHM prominence in our dataset.

The Spearman correlation coe±cient of age and

motion artifact prominence divided into three classes

yields r ¼ 0:268 with p < 0:001.

Considering the black-box nature of CNNs it is

important to investigate performance on expected

variations within our data. A comparison of network

performance between male and female samples

revealed comparable accuracy estimates for both

groups (female: 74.9%, male 75.5%; three-class clas-

si¯cation). This indicates applicability of our algo-

rithm irrespective of gender.

Table 3. Volume network three-class classi¯cation.

Volume-network three-class classi¯cation

Input: stack predictions 120: 40 stacks �a 3 classes 150: 50 stacks �a 3 classes 120: 40 stacks �a 3 classes
FC layer input 2 � 64 2 � 64 2 � 64
Merged input FC 256–128
Dropout rate 0.35 Optimizer Adam
Learning rate 1e�5 Loss Categorical cross-entropy

Accuracy Statistics Accuracy volume network

mean (SD) 0.67 (0.06) mean (SD) 0.76 (0.04)
split 1 0.68 split 1 0.76
split 2 0.67 split 2 0.76
split 3 0.64 split 3 0.75
split 4 0.77 split 4 0.82
split 5 0.58 split 5 0.69

The table provides an overview over network parameters and prediction accuracy of the three-class classi¯-
cation of the volume network. The upper half of the Table shows input size, layer size and parameter used for
training of the FC network. The bottom half of the table compares computing the mean across all stack
predictions of each volume network, and then forming a majority vote based on the mean across the stack
network predictions (left side) with the accuracy of an ensemble volume network (right side). Results are
displayed per split and as mean value and SD across all ¯ve splits.

E. Roecher et al.
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4. Discussion

In this study, we applied a CNN to classify the

prominence of RHM, re°ecting a \red °ag" ap-

proach. Consequently, our primary goal was the

identi¯cation of images showing pronounced motion

artifacts that may require further inspection by

clinicians, study personnel or data analysts. In a

second step, we integrated the classi¯cation of arti-

facts according to three classes: no visible artifacts,

moderate artifacts, and pronounced artifacts. Our

results indicate a high accuracy for the detection of

images with pronounced artifact load (95%). The

addition of an intermediate class resulted in an ac-

curacy of 76%. Hence, performance was clearly above

chance, however, the network is optimal for an au-

tomatic artifact detection that marks images with

pronounced artifacts. Results indicate similar per-

formance of the approach across gender.

Artifacts in imaging data can have a substantial

in°uence on the analysis and subsequent results, in-

cluding over- and underestimation of e®ects, as many

image segmentation approaches and probabilistic

brain-area matching algorithms rely on voxel inten-

sity. In daily clinical and research data acquisition

routines a fast and reliable on-site motion artifact

detection may thus facilitate data quality assurance

and hence data utilization. An accuracy of 95%

suggests that the current approach is suitable to

support identi¯cation of images with pronounced

visual motion artifacts. The identi¯ed images may

require additional inspections due to possible impact

on further analyses (e.g. Refs. 5 and 35). Our model

yields comparable results to Küstner and collea-

gues.23 However, the authors applied their algorithm

to a small dataset consisting solely of data with

volitionally induced motion artifacts (N ¼ 16).23

The authors used a clearly de¯ned assignment of

images due to rest (motion-free) versus motion con-

ditions. It remains unclear if the algorithm performs

similarly for artifacts caused by naturally occurring

and potentially more subtle motions. We extend

previous research by applying a machine-learning

approach to a larger naturalistic dataset. While a

subset of our data included volitionally induced

motion artifacts (N ¼ 19), most images contained

natural motion artifacts and hence presumably more

subtle variations. All included images underwent

expert ratings before training. In addition, gener-

alizability indicated suitable performance for appli-

cation on clinical data.

ML-based approaches have a high potential to in-

crease the e±ciency of data quality evaluation by

automatic labeling of potentially critical datasets. For

anatomical 3D volume images, a large number of slices

is generated by the MR scanner. Hence, stack-by-

stack autoclassi¯cation of artifacts such as provided

by our algorithm can considerably increase detailed

evaluations while minimizing time constraints on the

medical or study personnel. As a ¯rst use case, we

integrated the autoclassi¯cation of artifacts as part of

a newly established real-time fMRI neurofeedback

database. The approach was used to detect images

with insu±cient quality and \°ag" the respective

measurements to prompt researchers working with

the database to carefully consider inclusion of the re-

spective T1-weighted images in their data analyses.

To generalize network performance for artifact

detection, it is necessary to validate the network on

independent data. Here, it is important to highlight

two aspects of the present approach: (1) we used

data acquired at two di®erent scanners for the

training dataset, (2) we tested the generalizability of

our network on datasets that were acquired on our

inhouse MRI device in an independent study using

identical imaging protocols, (3) we applied the al-

gorithm to a local database containing images with

di®erent imaging sequences. Our results in both two-

class and three-class classi¯cation are substantially

above theoretical chance level of 50.00% and 33.33%

classi¯cation accuracy, respectively. However, due to

the limited amount of training examples, we also

investigated empirical chance level thresholds as

reported by Combrisson and Jerbi.36 Using the pro-

vided equation, we arrived at a chance level of

59.62% for the two-class classi¯cation and 40.48% for

the three-class classi¯cation with p ¼ 0:001. Thus,

the accuracy of both, the two-class stack network

and the three-class ensemble network approach

showed that our neural networks performed above

chance which renders them a viable option for com-

puter-assisted QA.

Importantly, the introduction of our two-network

approach (stack network and volume network) in-

creased classi¯cation performance notably compared

with a single network trained directly on full volume

Motion Artifact Detection for T1-Weighted Brain MR Images

2450052-11

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

24
.3

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

O
R

SC
H

U
N

G
SZ

E
N

T
R

U
M

 J
U

E
L

IC
H

 G
m

bH
 o

n 
08

/2
3/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



images while simultaneously increasing generaliz-

ability. Further, our volume network recognized an

underlying pattern in the prediction results gener-

ated by our stack networks, increasing classi¯cation

performance by 2% (two-class classi¯cation) and 9%

(three-class classi¯cation) when compared with a

simple statistical average across all stack predictions.

A visual inspection of stack predictions did not re-

veal an obvious pattern in predictions. Lastly, our

ensemble approach using three stack networks for

the three-class classi¯cation increased classi¯cation

accuracy compared to a volume network trained on

stack network predictions of a single network.

In addition to the overall average network per-

formance, we investigated how our trained networks

perform across di®erent classes to gain a better un-

derstanding of the decision-making process of the

network. In speci¯c, we were interested in whether

classi¯cation is conservative or rather liberal. Con-

servative in this context refers to a high recall value

for images exhibiting pronounced motion artifacts,

while liberal would indicate that images showing

pronounced artifacts are subjected to less pro-

nounced artifact classes. A conservative approach

appears favorable in the context of a \red °ag" ap-

proach since it prompts the clinician or researcher to

further inspect image quality and to decide on the

subsequent procedure (e.g. repetition of scans or ar-

tifact correction). To identify whether the network

performed conservatively or liberally, we investigat-

ed the confusion matrix and the receiver operating

characteristic (ROC) curves (see Fig. 4). The con-

fusion matrix shows the assigned label and the pre-

dicted class for all validation images by the ensemble

network. The majority of images in each class were

correctly classi¯ed. Incorrectly classi¯ed images be-

longing to the no visible motion artifacts and pro-

nounced motion artifacts classes were mostly

mapped to the neighboring moderate motion artifact

class. Precision and recall of the pronounced motion

artifact class is high with precision ¼ 0.83 and

recall ¼ 0.88, denoting solid detection of images

containing motion artifacts. This is con¯rmed by the

ROC curves in Fig. 4. However, the ROC curve for

the intermediate class indicates less discriminatory

power. Whilst most images in this class are still

mapped correctly by the ensemble network, precision

and recall show overall poorer performance when

compared to the other two classes. It is important to

note, that Cohen's kappa between rater A and rater

B prior to supervisory decision of � ¼ 0:52 represents

only moderate interrater reliability for the three-

class classi¯cation. In comparison Cohen's kappa of

� ¼ 0:72 for the two-class classi¯cation represents

Fig. 4. The ¯gure illustrates the di±culty to classify images belonging to the moderate motion artifact class. (a) on the left
shows the confusion matrix for the three-class classi¯cation of all validation images by the ensemble network. Precision and
recall by class are denoted in the last column and the bottom row, respectively. (b) on the right shows the ROC curves by class.
A perfect prediction is characterized by a curve through the upper left corner of the ROC space, while a random classi¯er is
represented by a point on the diagonal line. Class 0 with no visible motion artifacts and class 2 with pronounced motion artifacts
show a higher sensitivity and speci¯city as compared to the intermediate class.

E. Roecher et al.
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substantial agreement. For reference, Landis and

Koch regarded a kappa of � > 0:81 as almost perfect

agreement.37 Accordingly, while two-class classi¯ca-

tion yielded substantial agreement, our data indi-

cates the di±culty for human medical experts to

unambiguously classify motion artifacts in marginal

cases, which was also re°ected by our network per-

formance. Notably, Bottani et al. reported a com-

parable Cohen's kappa of 0.68 for their two-rater,

three-class motion artifact annotation.21

It is important to consider the age distribution in

investigations focusing on motion artifacts. Previous

studies indicated an acceleration of motion artifacts

in children and adolescents5,38 possibly related to

di±culties in inhibiting unwanted behavior as well as

older individuals that may experience more di±cul-

ties to remain still for the duration of the measure-

ment.23,35 While we cannot con¯rm higher proneness

for movement in young children and adolescents in

this study due to the inclusion of data from adults only,

our data indicates a slight positive association between

age and the prominence of motion artifacts as deter-

mined with the Spearman Correlation. This ¯nding is

consistent with previous investigations.35,39 To con-

¯rm generalizability across sexes, we explored whether

sex had an in°uence on prediction accuracy of our al-

gorithm. Our ¯ndings indicate that the algorithm

performance was similar for images acquired for males

and females. Accordingly, our results suggest the

sex-independent validity of the presented CNNmodel.

5. Limitations

Our developed CNNs were trained and evaluated on

T1-weighted images acquired using identical MP-

RAGE (Magnetization Prepared — RApid Gradient

Echo) sequences with isovolumetric voxel. The gener-

alizability of our networks was tested on independent

datasets, however, further testing our approach on

di®erent equipment and T1-weighted sequences is re-

quired to con¯rm universal applicability. Furthermore,

due to our slice-stack approach, predictions were based

on stacks of slices, while our images were rated on a

volume basis. A manual rating of individual slices

might improve network performance. However, while

this approach would certainly be desirable, it would

require more extensive expert ratings that are highly

time-consuming and thus, costly.

Lastly, RHM prominence was treated as a clas-

si¯cation task. This is desirable for the applicability

of our approach and easier integration into a clinical

routine; however, artifact prominence is by de¯nition

a continuous scale and the cuto® between classes had

to be chosen by our human raters. While research

indicates that motion artifacts impact subsequent

data analysis, the extent of motion artifacts accept-

able needs to be evaluated by human experts

depending on individual use cases. Future investi-

gations need to consider user-adjustable cuto®s be-

tween motion artifact classes. Further, it is

important to note that ratings of image quality de-

pend on several aspects including, but not limited to,

motion artifacts. Hence, while the current focus on a

\red °ag" approach supports identi¯cation of critical

images further decisions on repetition, exclusion of

data, or artifact correction have to be made

depending on the speci¯c use cases.

6. Conclusion

The present artifact classi¯cation CNN yields

promising accuracy for the detection of images with

pronounced motion artifacts. Training and valida-

tion of the algorithm was performed on naturalistic

data and generalizability was demonstrated on an

independent dataset. Our approach may support the

e±ciency of QAs in large datasets by enabling fast

detection of images with motion artifacts. This may

also prompt decisions on immediate scan repetitions.

Prospective development needs to address the sen-

sitivity and speci¯city of predictions. Adjustable

thresholds for the individual classes support adap-

tation to di®erent applications. Further re¯nement

of our networks based on additional training data,

i.e. containing anatomical irregularities, is desirable.
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