001029130 001__ 1029130
001029130 005__ 20240723202042.0
001029130 0247_ $$2doi$$a10.1101/2024.06.17.599426
001029130 037__ $$aFZJ-2024-04986
001029130 082__ $$a570
001029130 1001_ $$00000-0001-7842-0329$$aKong, Ru Q$$b0$$eCorresponding author
001029130 245__ $$aA network correspondence toolbox for quantitative evaluation of novel neuroimaging results
001029130 260__ $$aCold Spring Harbor$$bCold Spring Harbor Laboratory, NY$$c2024
001029130 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1721714741_32425
001029130 3367_ $$2ORCID$$aWORKING_PAPER
001029130 3367_ $$028$$2EndNote$$aElectronic Article
001029130 3367_ $$2DRIVER$$apreprint
001029130 3367_ $$2BibTeX$$aARTICLE
001029130 3367_ $$2DataCite$$aOutput Types/Working Paper
001029130 520__ $$aDecades of neuroscience research has shown that macroscale brain dynamics can be reliably decomposed into a subset of large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them can vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. To address this problem, we have developed the Network Correspondence Toolbox (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and sixteen widely used functional brain atlases, consistent with recommended reporting standards developed by the Organization for Human Brain Mapping. The atlases included in the toolbox show some topographical convergence for specific networks, such as those labeled as default or visual. Network naming varies across atlases, particularly for networks spanning frontoparietal association cortices. For this reason, quantitative comparison with multiple atlases is recommended to benchmark novel neuroimaging findings. We provide several exemplar demonstrations using the Human Connectome Project task fMRI results and UK Biobank independent component analysis maps to illustrate how researchers can use the NCT to report their own findings through quantitative evaluation against multiple published atlases. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The NCT also includes functionality to incorporate additional atlases in the future. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.
001029130 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001029130 588__ $$aDataset connected to CrossRef
001029130 7001_ $$00000-0003-1530-8916$$aSpreng, R. Nathan$$b1
001029130 7001_ $$00009-0008-7907-8594$$aXUE, AIHUIPING$$b2
001029130 7001_ $$00000-0001-9200-1681$$aBetzel, Richard$$b3
001029130 7001_ $$aCohen, Jessica R$$b4
001029130 7001_ $$00000-0003-2312-7728$$aDamoiseaux, Jessica$$b5
001029130 7001_ $$aDe Brigard, Felipe$$b6
001029130 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b7
001029130 7001_ $$00000-0001-9134-480X$$aFornito, Alex$$b8
001029130 7001_ $$00000-0003-4607-7401$$aGratton, Caterina$$b9
001029130 7001_ $$00000-0002-2276-5237$$aGordon, Evan M$$b10
001029130 7001_ $$00000-0001-6583-803X$$aHolmes, Avram J$$b11
001029130 7001_ $$00000-0003-3379-8744$$aLaird, Angela R$$b12
001029130 7001_ $$00000-0002-9334-048X$$aLarson-Prior, Linda$$b13
001029130 7001_ $$00000-0002-9623-6688$$aNickerson, Lisa D$$b14
001029130 7001_ $$00000-0001-8718-0902$$aPinho, Ana Luisa$$b15
001029130 7001_ $$00000-0002-0779-9439$$aRazi, Adeel$$b16
001029130 7001_ $$00000-0001-8800-3959$$aSadaghiani, Sepideh$$b17
001029130 7001_ $$00000-0003-1762-5499$$aShine, James$$b18
001029130 7001_ $$00000-0003-1386-3828$$aYendiki, Anastasia$$b19
001029130 7001_ $$00000-0002-0119-3276$$aYeo, B. T. Thomas$$b20
001029130 7001_ $$00000-0003-2278-8962$$aUddin, Lucina Q$$b21
001029130 773__ $$0PERI:(DE-600)2766415-6$$a10.1101/2024.06.17.599426$$tbioRxiv beta$$y2024
001029130 909CO $$ooai:juser.fz-juelich.de:1029130$$pVDB
001029130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
001029130 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001029130 9141_ $$y2024
001029130 920__ $$lyes
001029130 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001029130 980__ $$apreprint
001029130 980__ $$aVDB
001029130 980__ $$aI:(DE-Juel1)INM-7-20090406
001029130 980__ $$aUNRESTRICTED