001029131 001__ 1029131
001029131 005__ 20240723202043.0
001029131 0247_ $$2doi$$a10.1101/2024.06.18.599509
001029131 037__ $$aFZJ-2024-04987
001029131 082__ $$a570
001029131 1001_ $$0P:(DE-Juel1)190448$$aSaberi, Amin$$b0$$eCorresponding author$$ufzj
001029131 245__ $$aAdolescent maturation of cortical excitation-inhibition balance based on individualized biophysical network modeling
001029131 260__ $$aCold Spring Harbor$$bCold Spring Harbor Laboratory, NY$$c2024
001029131 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1721716840_6181
001029131 3367_ $$2ORCID$$aWORKING_PAPER
001029131 3367_ $$028$$2EndNote$$aElectronic Article
001029131 3367_ $$2DRIVER$$apreprint
001029131 3367_ $$2BibTeX$$aARTICLE
001029131 3367_ $$2DataCite$$aOutput Types/Working Paper
001029131 520__ $$aThe balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.Keywords: Adolescence; Biophysical network modeling; Excitation-inhibition balance; Resting-state functional magnetic resonance imaging.
001029131 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001029131 588__ $$aDataset connected to CrossRef
001029131 7001_ $$0P:(DE-Juel1)178756$$aWischnewski, Kevin J.$$b1$$ufzj
001029131 7001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b2$$ufzj
001029131 7001_ $$0P:(DE-Juel1)192260$$aLotter, Leon D.$$b3$$ufzj
001029131 7001_ $$aSchaare, H. Lina$$b4
001029131 7001_ $$aBanaschewski, Tobias$$b5
001029131 7001_ $$aBarker, Gareth J.$$b6
001029131 7001_ $$aBokde, Arun L. W.$$b7
001029131 7001_ $$aDesrivières, Sylvane$$b8
001029131 7001_ $$aFlor, Herta$$b9
001029131 7001_ $$aGrigis, Antoine$$b10
001029131 7001_ $$aGaravan, Hugh$$b11
001029131 7001_ $$aGowland, Penny$$b12
001029131 7001_ $$aHeinz, Andreas$$b13
001029131 7001_ $$aBrühl, Rüdiger$$b14
001029131 7001_ $$aMartinot, Jean-Luc$$b15
001029131 7001_ $$aPaillère Martinot, Marie-Laure$$b16
001029131 7001_ $$aArtiges, Eric$$b17
001029131 7001_ $$aNees, Frauke$$b18
001029131 7001_ $$aPapadopoulos Orfanos, Dimitri$$b19
001029131 7001_ $$aLemaitre, Herve$$b20
001029131 7001_ $$aPoustka, Luise$$b21
001029131 7001_ $$aHohmann, Sarah$$b22
001029131 7001_ $$aHolz, Nathalie$$b23
001029131 7001_ $$aBaeuchl, Christian$$b24
001029131 7001_ $$aSmolka, Michael N.$$b25
001029131 7001_ $$aVaidya, Nilakshi$$b26
001029131 7001_ $$aWalter, Henrik$$b27
001029131 7001_ $$aWhelan, Robert$$b28
001029131 7001_ $$aSchumann, Gunter$$b29
001029131 7001_ $$aPaus, Tomáš$$b30
001029131 7001_ $$0P:(DE-Juel1)177772$$aDukart, Juergen$$b31
001029131 7001_ $$aBernhardt, Boris C.$$b32
001029131 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b33$$ufzj
001029131 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b34
001029131 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L.$$b35
001029131 773__ $$0PERI:(DE-600)2766415-6$$a10.1101/2024.06.18.599509$$tbioRxiv beta$$y2024
001029131 909CO $$ooai:juser.fz-juelich.de:1029131$$pVDB
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190448$$aForschungszentrum Jülich$$b0$$kFZJ
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178756$$aForschungszentrum Jülich$$b1$$kFZJ
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b2$$kFZJ
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192260$$aForschungszentrum Jülich$$b3$$kFZJ
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b33$$kFZJ
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b34$$kFZJ
001029131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b35$$kFZJ
001029131 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001029131 9141_ $$y2024
001029131 920__ $$lyes
001029131 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001029131 980__ $$apreprint
001029131 980__ $$aVDB
001029131 980__ $$aI:(DE-Juel1)INM-7-20090406
001029131 980__ $$aUNRESTRICTED