001029132 001__ 1029132
001029132 005__ 20250203133151.0
001029132 0247_ $$2doi$$a10.1038/s42003-024-06438-5
001029132 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04988
001029132 0247_ $$2pmid$$a38926486
001029132 0247_ $$2WOS$$aWOS:001255406300001
001029132 037__ $$aFZJ-2024-04988
001029132 082__ $$a570
001029132 1001_ $$0P:(DE-Juel1)188339$$aOmidvarnia, Amir$$b0$$eCorresponding author
001029132 245__ $$aIndividual characteristics outperform resting-state fMRI for the prediction of behavioral phenotypes
001029132 260__ $$aLondon$$bSpringer Nature$$c2024
001029132 3367_ $$2DRIVER$$aarticle
001029132 3367_ $$2DataCite$$aOutput Types/Journal article
001029132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721718067_32425
001029132 3367_ $$2BibTeX$$aARTICLE
001029132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029132 3367_ $$00$$2EndNote$$aJournal Article
001029132 520__ $$aIn this study, we aimed to compare imaging-based features of brain function, measured by resting-state fMRI (rsfMRI), with individual characteristics such as age, gender, and total intracranial volume to predict behavioral measures. We developed a machine learning framework based on rsfMRI features in a dataset of 20,000 healthy individuals from the UK Biobank, focusing on temporal complexity and functional connectivity measures. Our analysis across four behavioral phenotypes revealed that both temporal complexity and functional connectivity measures provide comparable predictive performance. However, individual characteristics consistently outperformed rsfMRI features in predictive accuracy, particularly in analyses involving smaller sample sizes. Integrating rsfMRI features with demographic data sometimes enhanced predictive outcomes. The efficacy of different predictive modeling techniques and the choice of brain parcellation atlas were also examined, showing no significant influence on the results. To summarize, while individual characteristics are superior to rsfMRI in predicting behavioral phenotypes, rsfMRI still conveys additional predictive value in the context of machine learning, such as investigating the role of specific brain regions in behavioral phenotypes.
001029132 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001029132 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029132 7001_ $$0P:(DE-Juel1)190306$$aSasse, Leonard$$b1
001029132 7001_ $$0P:(DE-Juel1)180372$$aLarabi, Daouia I.$$b2
001029132 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b3
001029132 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4
001029132 7001_ $$0P:(DE-Juel1)184653$$aKasper, Jan$$b5
001029132 7001_ $$0P:(DE-Juel1)177727$$aDukart, Jürgen$$b6
001029132 7001_ $$0P:(DE-Juel1)189067$$aPetersen, Marvin$$b7$$ufzj
001029132 7001_ $$00000-0003-2434-1822$$aCheng, Bastian$$b8
001029132 7001_ $$0P:(DE-HGF)0$$aThomalla, Götz$$b9
001029132 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b10
001029132 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b11
001029132 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-024-06438-5$$gVol. 7, no. 1, p. 771$$n1$$p771$$tCommunications biology$$v7$$x2399-3642$$y2024
001029132 8564_ $$uhttps://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.pdf$$yOpenAccess
001029132 8564_ $$uhttps://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.gif?subformat=icon$$xicon$$yOpenAccess
001029132 8564_ $$uhttps://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029132 8564_ $$uhttps://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029132 8564_ $$uhttps://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029132 8767_ $$8SN-2024-00571-b$$92024-08-20$$d2024-09-11$$eAPC$$jZahlung erfolgt
001029132 909CO $$ooai:juser.fz-juelich.de:1029132$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188339$$aForschungszentrum Jülich$$b0$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190306$$aForschungszentrum Jülich$$b1$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180372$$aForschungszentrum Jülich$$b2$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b3$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184653$$aForschungszentrum Jülich$$b5$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b6$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189067$$aForschungszentrum Jülich$$b7$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b10$$kFZJ
001029132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b11$$kFZJ
001029132 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001029132 9141_ $$y2024
001029132 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029132 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001029132 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001029132 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001029132 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001029132 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001029132 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
001029132 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001029132 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001029132 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029132 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029132 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001029132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2022$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:12Z
001029132 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:12Z
001029132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:12Z
001029132 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001029132 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2022$$d2024-12-11
001029132 920__ $$lyes
001029132 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001029132 9801_ $$aFullTexts
001029132 980__ $$ajournal
001029132 980__ $$aVDB
001029132 980__ $$aUNRESTRICTED
001029132 980__ $$aI:(DE-Juel1)INM-7-20090406
001029132 980__ $$aAPC