001     1029132
005     20250203133151.0
024 7 _ |a 10.1038/s42003-024-06438-5
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04988
|2 datacite_doi
024 7 _ |a 38926486
|2 pmid
024 7 _ |a WOS:001255406300001
|2 WOS
037 _ _ |a FZJ-2024-04988
082 _ _ |a 570
100 1 _ |a Omidvarnia, Amir
|0 P:(DE-Juel1)188339
|b 0
|e Corresponding author
245 _ _ |a Individual characteristics outperform resting-state fMRI for the prediction of behavioral phenotypes
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721718067_32425
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we aimed to compare imaging-based features of brain function, measured by resting-state fMRI (rsfMRI), with individual characteristics such as age, gender, and total intracranial volume to predict behavioral measures. We developed a machine learning framework based on rsfMRI features in a dataset of 20,000 healthy individuals from the UK Biobank, focusing on temporal complexity and functional connectivity measures. Our analysis across four behavioral phenotypes revealed that both temporal complexity and functional connectivity measures provide comparable predictive performance. However, individual characteristics consistently outperformed rsfMRI features in predictive accuracy, particularly in analyses involving smaller sample sizes. Integrating rsfMRI features with demographic data sometimes enhanced predictive outcomes. The efficacy of different predictive modeling techniques and the choice of brain parcellation atlas were also examined, showing no significant influence on the results. To summarize, while individual characteristics are superior to rsfMRI in predicting behavioral phenotypes, rsfMRI still conveys additional predictive value in the context of machine learning, such as investigating the role of specific brain regions in behavioral phenotypes.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sasse, Leonard
|0 P:(DE-Juel1)190306
|b 1
700 1 _ |a Larabi, Daouia I.
|0 P:(DE-Juel1)180372
|b 2
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 3
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 4
700 1 _ |a Kasper, Jan
|0 P:(DE-Juel1)184653
|b 5
700 1 _ |a Dukart, Jürgen
|0 P:(DE-Juel1)177727
|b 6
700 1 _ |a Petersen, Marvin
|0 P:(DE-Juel1)189067
|b 7
|u fzj
700 1 _ |a Cheng, Bastian
|0 0000-0003-2434-1822
|b 8
700 1 _ |a Thomalla, Götz
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 10
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 11
773 _ _ |a 10.1038/s42003-024-06438-5
|g Vol. 7, no. 1, p. 771
|0 PERI:(DE-600)2919698-X
|n 1
|p 771
|t Communications biology
|v 7
|y 2024
|x 2399-3642
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029132/files/s42003-024-06438-5.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029132
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188339
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)189067
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:12Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2024-12-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21