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Individual characteristics outperform
resting-state fMRI for the prediction of
behavioral phenotypes

Check for updates

Amir Omidvarnia 1,2 , Leonard Sasse 1,2,3, Daouia I. Larabi 4, Federico Raimondo 1,2,
Felix Hoffstaedter 1,2, Jan Kasper1,2, Jürgen Dukart1,2, Marvin Petersen 5, Bastian Cheng 5,
Götz Thomalla5, Simon B. Eickhoff1,2 & Kaustubh R. Patil 1,2

In this study, we aimed to compare imaging-based features of brain function, measured by resting-
state fMRI (rsfMRI), with individual characteristics such as age, gender, and total intracranial volume to
predict behavioralmeasures.Wedeveloped amachine learning framework basedon rsfMRI features in
a dataset of 20,000 healthy individuals from the UK Biobank, focusing on temporal complexity and
functional connectivity measures. Our analysis across four behavioral phenotypes revealed that both
temporal complexity and functional connectivity measures provide comparable predictive
performance. However, individual characteristics consistently outperformed rsfMRI features in
predictive accuracy, particularly in analyses involving smaller sample sizes. Integrating rsfMRI features
with demographic data sometimes enhanced predictive outcomes. The efficacy of different predictive
modeling techniques and the choice of brain parcellation atlas were also examined, showing no
significant influenceon the results. To summarize,while individual characteristicsare superior to rsfMRI
in predicting behavioral phenotypes, rsfMRI still conveys additional predictive value in the context of
machine learning, such as investigating the role of specific brain regions in behavioral phenotypes.

Resting-state functional magnetic resonance imaging (rsfMRI) is a widely
used neuroimaging modality for studying human brain function1–3. Func-
tional connectivity is an important aspect of rsfMRI defined as the statistical
dependence between different brain areas during periods of rest or low
cognitive demand4. A common application of rsfMRI is the prediction of
cognitive performance5–8, and clinical phenotypes7,9–12. A common
approach is to extract multiple features from rsfMRI and utilize them in
predictive modeling. This method has been boosted by modern MRI
scanners with high magnetic field strengths, big public datasets, high-
performance computing systems, computationally enhanced software
packages, and more efficient machine learning algorithms13. However, the
field has struggled to advance to real-world applications due to systematic
challenges such as modest prediction accuracy in large populations
(Nsubject > 2000) and replication failures of studies with small sample
sizes7,8,14,15. An effective improvement could be to consider features beyond
prevalent functional connectivity measures.

In many of the current rsfMRI-based prediction pipelines, individual
characteristics such as age, gender, and total intracranial volume (TIV) are
typically treated as confounds and hence removed from the rsfMRI features
or from theprediction targets16. The rationale behind this practice is that any
information other than that directly related to brain activity should be
discarded because it may prevent us from determining the neuronal origin
of the predictive signal17. However, there is evidence that features based on
individual characteristics might be better at predicting measures of mental
health than those based on fMRI18,19. The relative efficacy of rsfMRI and
individual characteristics in predicting behavioral phenotypes is still deba-
table. The capacities and constraints of rsfMRI in behavioral prediction can
be better understood by addressing this debate. To investigate this, we
developed four behavioral prediction scenarios using awide rangeof rsfMRI
features in conjunction with three typically considered confounds, age,
gender, and TIV. We used a large sample from the UK Biobank
(Nsubject = 20,000) that included rsfMRI and four behavioral phenotypes:
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fluid intelligence, processing speed, visual memory, and numerical
memory20. The behavioral phenotypes were then predicted using different
rsfMRI features at the brain region of interest (ROI) level.

Functional connectivity and large-scale nonlinear interactions between
brain regions are intertwined21,22. The nonlinearity of functional connec-
tions at micro-, meso-, andmacro-scales gives rise to a temporally complex
behavior in the hemodynamic response of the brain across time, as mea-
sured by fMRI23,24. There is evidence that the temporal complexity of rsfMRI
and behavioral phenotypes are correlated, providing a promising feature
space for brain-behavior predictions25–29. As temporal complexity may col-
lect different rsfMRIproperties than functional connectivity, it is expected to
be able to supplement functional connectivity’s prediction capacity. On the
other hand, it is unclear how these rsfMRI-derived properties relate to the
noise profile of various brain regions, originated from hardware, head
movement, heartbeat, and respiration30. In the behavioral prediction pipe-
lines of this study, we utilized nine rsfMRI features covering five prominent
characteristics of functional connectivity (fractional amplitude of low-
frequency fluctuations or fALFF31, local correlation or LCOR32, global cor-
relation orGCOR33, Eigenvector centrality or EC34, and weighted clustering
coefficient or wCC34) as well as four temporal complexity metrics (Hurst
exponent or HE35, Weighted permutation entropy or wPE36, Range
entropy (type B) orRangeEnB

37, andMultiscale entropy orMSE38).We then
entered these features into the predictive modeling pipelines, considering
different roles for age, gender, and TIV as follows: (i) rsfMRI features
without removing age, gender, and TIV, (ii) rsfMRI features after removing
of these individual characteristics (i.e., treating them as confounds), (iii) a
combination of rsfMRI features with age, gender, and TIV, and (iv) age,
gender, and TIV only. We also investigated the impact of ROI-wise tem-
poral signal to noise ratio (tSNR) on themodels to examine the influence of
noisybrain regions in thepredictions. Figure 1a illustrates the blockdiagram
of the study.

We found that the temporal complexity and functional connectivity
features both give about the same predictive power when applied to four
different behavioral phenotypes. Nevertheless, individual characteristics
routinely outperformed rsfMRI features in predictive accuracy in analyses
involving smaller sample sizes. Age, gender, and TIV, when combined with
rsfMRI features, improved predictive outcomes. The results were relatively
unaffectedby the selectionof brain atlasor the effectiveness of twopredictive
modeling methods. The removal of age, gender, and TIV from the features
or targets resulted in reduced performance. The results also showed that age
and gender could be predictedmore accurately than behavioral phenotypes
in general. Our findings indicate that individual characteristics outperform
rsfMRI in predicting behavioral phenotypes, but rsfMRI can still offer
supplementary predictive capability.

Results
Statistics and Reproducibility
In order to investigate the generalizability of our findings across brain atlas
configurations and predictive models, we performed all analyses using
Schaefer400 and Glasser360 brain parcellation atlases as well as linear ridge
regression and linear support vector machine (SVM). The results of four
atlas-model combinations were consistent across various sample sizes and
predictive modeling scenarios (see Fig. 1a). Age, gender, and TIV con-
sistently outperformed rsfMRI features in predicting behavioral pheno-
types, irrespective of the atlas and model used. The accuracy curves for
predicting behavioral phenotypes over different population sizes using the
Schaefer400 atlas were comparable with those obtained using the Glas-
ser360 atlas, for both the ridge regressionmodel (Fig. 2 and Fig. S1) and the
linear SVMmodel (Fig. 2, Fig. S3, S7–S10).We also investigated the impact
of tSNR thresholding on the prediction accuracies using the Schaefer400
atlas (Fig. 3 as well as Fig. S18 to Fig. S21). A similar situation was observed
when performing age and gender prediction as shown in the pairs of Fig. 4
versus Fig. S4, Fig. S5 versus Fig. S6, Fig. S11 versus Fig. S12, and Fig. S13
versus Fig. S14. This consistent observation suggests that the superior pre-
dictive capacity of demographics and TIV as well as their

combinations extend beyond the specific choice of brain atlas and pre-
dictive model.

We chose to use ridge regression in our primary study due to its widely
recognized application in neuroimaging and behavioral research39,40.
Fig. S15 demonstrates the histogram of the best alpha parameters which led
to the best optimization for the ridge regression models across different
scenarios. We then incorporated linear SVM with heuristic hyper para-
metrization in addition to ridge regression and repeated all analyses using
thismodel.Althoughbothmodels showed comparable performance at large
population sizes, ridge regression demonstrated greater stability, particu-
larly in situations with smaller samples and lower prediction accuracy. This
can be observed by comparing the prediction accuracies of visual memory
and numeric memory in Fig. S2 with their corresponding curves in Fig. S3.
Furthermore, the linear SVMmodel necessitates a larger population size to
achieve its maximum predictive capability, as opposed to the ridge model.
This canbeobservedby comparing the accuracy curves for processing speed
prediction in Fig. S2 with the corresponding curves in Fig. S3. It justifies the
utilization of ridge regression and classification for the behavioral pheno-
type prediction when using rsfMRI features.

Quantifying rsfMRI complex dynamics and behavioral
phenotypes
We used preprocessed rsfMRI data from 20,000 unrelated UK Biobank
participants17 and extracted four temporal complexity measures as well as
five functional connectivity-derivedmeasures from them (seeMethods). As
prediction targets, we chose the fourmost reliable behavioral phenotypes in
the UK Biobank database, fluid intelligence, processing speed, visual
memory, and numerical memory41. See Table S1 in the Supplementary
Materials for more details. We used ridge regression with L2-norm reg-
ularization and linear SVM with heuristic hyper parametrization for pre-
dictive modeling, widely used models for behavioral phenotypic prediction
using rsfMRI7,40,42. Model performance was measured through cross-
validation using the Spearman correlation between the real and predicted
targets in regression tasks or the balanced accuracy in classification tasks.
We used nested cross-validation where the hyper parameter α of ridge
regressionwas tuned in the inner loop19. The impact of age, gender, andTIV,
was addressed through four scenarios, outlined in Fig. 1 (see alsoMethods).

Larger sample sizes increase accuracy but eventually reach a
plateau
First, we examined whether increasing the sample size could improve the
prediction accuracy of behavioral and non-behavioral targets in all four
scenarios (Fig. 1). Increasing the number of subjects improved accuracy
most of the time, but the performance curves reached a plateau when
including approximately more than 2,000 participants in the analyses
(Fig. 2, and Fig. S1 to Fig. S6). As a sanity check, we tested all the predictive
modeling scenarios using fish consumption (the day prior to fMRI data
collection—data field 103140) as a target presumably unrelated to the
rsfMRI features. The performance for all sample sizes, rsfMRI features,
individual characteristics, and their combinations remained at chance level
(Fig. 2, and Fig. S1–S6). The findings presented in Fig. 2, along with
Fig. S1–S3, utilized all brain regions without applying any tSNR thresh-
olding. This included a total of 400 and 360 regions for the Schaefer and
Glasser atlases, respectively. Then, we only used the Schaefer400 brain atlas
to investigate the impact of tSNR thresholding on the prediction accuracies
(Fig. 3 as well as Fig S18–S21). The brain feature maps were subsequently
subjected to a thresholding process based on the ROI-wise tSNR values of
parcellated rsfMRI datasets. The subset of ROIs that passed the threshold
were retained as features for prediction analysis.

Temporal complexity and functional connectivity features show
comparable predictive capacities
Next, we investigatedhow temporal complexity and functional connectivity
features compare in behavioral phenotype prediction across different
sample sizes. The average performance of ridge regression and linear SVM
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models across 5 repeats and 5 folds of nested cross-validation suggested that
certain features, specifically fALFF, LCOR,wPE, and the AUC of RangeEnB,
performed better than others in all contexts, regardless of the target. The
correlationbetween actual andpredicted values remainedbelow0.35 evenat
the maximum sample size (20,000 individuals). Even with this large sample
size, not all behavioral phenotypes could be predicted with equal accuracy
(Fig. 2). Fluid intelligence (data field 20016) was predicted with the highest
correlation coefficient of up to 0.14, followed by processing speed (datafield
20023) andnumericmemory (datafield 20240)with~0.1whenusingLCOR
after removing age, gender, and TIV. The prediction accuracy of processing
speed was higher than that of the other three behavioral phenotypes when
using age, gender, and TIV only (Scenario 4, see Fig. 1). However, as shown

in the black-colored curves of Fig. 2 and the corresponding Supplementary
Figs., the predictability of fluid intelligence, visual memory, and numerical
memory scores was close to each other.

Age, gender, and TIV result in higher accuracy than rsfMRI
features
Next, we tested how age, gender, and TIV predict behavioral performance
when used as sole input features and without any rsfMRI data involved
(Fig. 1(b.1)). As shown in Fig. 2 and Fig. S1 to Fig. S3, this scenario resulted
in the highest correlation between actual and predicted targets using both
ridge regression and SVMmodelings across all sample sizes, outperforming
all scenarioswhere rsfMRI featureswereutilized (Fig. 1(b.1–b.3)). Itwas also

Fig. 1 | The analysis pipeline and different analysis scenarios of this study. aMain
block diagram of this study, including the rsfMRI features and the prediction targets
from the UK Biobank. b Four analysis scenarios based on the role of individual

characteristics, i.e., age, gender, and total intracranial volume, in behavioral phe-
notypic prediction. Abbreviations: rsfMRI resting state functional magnetic reso-
nance imaging, TIV total intracranial volume, ROI region of interest.
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independent from the brain parcellation atlas used for feature extraction.
When individual characteristics served as input features, the sample size
required to reach the plateau was also substantially lower (less than
500 subjects). In other words, the ability of individual characteristics to
predict behavioral phenotypes from a small sample size was better than the
ability of rsfMRI features to predict the same targets, even when a larger
sample size was used.

Given that the individual characteristics outperformed rsfMRI features
in predicting behavioral phenotypes, the next logical step was to combine
each temporal complexity and functional connectivity features with indi-
vidual characteristics and see if it improves the predictions. For all rsfMRI
features, this scenario produced the highest prediction accuracy of the first
three analysis scenarios. The distinction between combined rsfMRI features
and individual characteristics (Fig. 2, Scenario 3) and rsfMRI features only
(Scenarios 1 and 2) was more pronounced when predicting processing
speed in comparison to the other three behavioral phenotypes.

Figure S7 to Fig. S10 illustrate the box plot presentations of Fig. 2 and Fig. S1
to Fig. S3.

Temporal SNR plays no major role
We then askedwhether excluding brain regions with low tSNR levels would
increase prediction accuracy.We used a group-level tSNRmap to threshold
the rsfMRI feature maps (see Methods). Figure 3 shows fluid intelligence
prediction accuracies for Scenarios 1 to 3 after stepwise thresholding on the
tSNRmaps from 0% (no threshold, equivalent with the results illustrated in
Fig. 2) to 100% (no ROI for prediction) with 5% increments. Each panel in
the figure represents a distinct pair of features and targets, with color-coded
accuracy values. The x-axis indicates the population size in the analysis,
while the y-axis denotes the count of suprathreshold ROIs after tSNR
thresholding. The predictive modeling for each feature-target pair was
conducted across various sample sizes, spanning Nsubject = 100 to
Nsubject = 20,000. For population sizes between 100 and 2000, increments of

Fig. 2 | Prediction of different behavioral phenotypes. The prediction was done
across different sample sizes using the Schaefer400 brain atlas and ridge predictive
modeling. The x-axis represents the population size in the analysis, ranging from
100 to 20,000 UK Biobank participants. The y-axis shows the prediction accuracy
measured by the Spearman correlation coefficient for behavioral phenotypes (fluid
intelligence, processing speed, visual memory, and numeric memory) as well as age,

and by the balanced accuracy for gender and fish consumption prediction. The
prediction accuracy curves for each behavioral phenotype and individual char-
acteristic are color-coded. rsfMRI resting state functional magnetic resonance
imaging, PE permutation entropy, fALFF fractional amplitude of low frequency
fluctuations, LCOR local correlation, GCOR global correlation, EC eigenvector
centrality, CC clustering coefficient.
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50 subjects were employed, while increments of 500 subjects were applied
for the range of 2000 to 20,000. Prediction accuracies improved with
increasing sample size and the number of suprathreshold ROIs. The finding
was consistent across the other behavioral phenotypes (see Figs. S18–S20).
Prediction accuracy for fish consumption remained at chance-level at all
tSNR thresholds (Fig. S21). As shown in Fig. 3, we observed that overall,
prediction performance improvedwith the number of suprathreshold ROIs
and the tSNR level. However, the figure does not explain which of these two
factors are themain driver here. Figure S16 andFig. S17 show the prediction
accuracies as a functionof these two factors using the Schaefer400brain atlas
and the linear SVM model with heuristic C for all rsfMRI features and
prediction targets at Nsubject = 20,000. As Fig. S16 illustrates, the prediction
accuracies strongly depend on the number of ROIswhen this number is low
(typically less than 150). However, they increase and become largely inde-
pendent of the number of ROIswhen this number is sufficiently high.Given
that the two sets of prediction accuracy curves (shown in Fig. S16 and
Fig. S17) show a similar pattern of prediction performance, one can con-
clude that the ROI count is the main factor influencing the accuracy of the
predictions, regardless of the tSNR of the involved ROIs in the prediction
procedure. Applying a tSNR threshold of 60% resulted in 13 suprathreshold
ROIs using the Schaefer400 brain atlas. This was the minimum number of
suprathresholdROIs that could be detected in the parcellateddata following
tSNR thresholding. No suprathreshold ROIs were produced when the ROI
thresholds were less than 60% of the maximum tSNR across all regions.
Figure S17shows thatmost of thepredictionaccuracy curvesdrop sharply at
the tSNR level of about 65%. This means that the feature vectors that were
thresholded above this level were not informative enough for prediction
because there were not enough suprathreshold ROIs for that. However, the
prediction accuracy curves have been presented in the figures from 0% to

100% of tSNR thresholding for the sake of completeness. Figure S22 illus-
trates the spatial distributionof the tSNRvalues across brain regions for both
brain parcellation atlases. According to Fig. S22, the numbers of supra-
threshold ROIs at tSNR threshold level spanning from 0% to 60% with 5%
increment for the Schaefer400 and Glasser360 brain atlases are [400, 397,
397, 396, 387, 366, 333, 276, 201, 130, 68, 33, 13] and [360, 360, 356, 353, 338,
311, 270, 203, 142, 83, 57, 25, 10], respectively. For both brain atlases, tSNR
levels above 60% led to no suprathreshold ROIs.We have included the nifti
files of normalized tSNR maps for both brain atlases in the supplement
allowing the readers to directly examine any desired threshold.

Ageandgender are easier to predict thanbehavioral phenotypes
We investigated the capability of the rsfMRI features to predict age and
gender using ridge regression and linear SVM. wPE and RangeEnB (tem-
poral complexity) performedbest at large sample sizes, as well as fALFF and
LCOR (functional connectivity), with correlation coefficients of up to
0.5 between the true and predicted targets. This accuracy was considerably
better than the prediction accuracy of behavioral phenotypes, which was
typically less than 0.25 (see Fig. 2 versus Fig. 4, and Fig. S4 to Fig. S6). This
result was noticeably different when individual characteristics were used as
features for predictivemodeling (gender andTIV for age prediction, and age
and TIV for gender prediction). Gender could be classified using age and
TIV with more than 85% accuracy. However, gender and TIV did not
performwell in age prediction (ρ ¼ 0:2). Figure S11 toFig. S14 illustrate the
box plot presentations of Fig. 4 and Figs. S4–S6.

Similar individual patterns across rsfMRI features
We observed that some rsfMRI features have comparable predictive capa-
city, despite their mathematical definitions and interpretations being quite

Fig. 3 | Analysis of tSNR for fluid intelligence prediction. Spearman correlation
accuracy was used with ridge regression modeling of fluid intelligence using nine
rsfMRI features and after tSNR thresholding from 0% to 100% through Scenario 1
(a), Scenario 2 (b), and Scenario 3 (c). Schaefer400 brain atlas was used for rsfMRI
parcellation. The numbers of suprathreshold ROIs at tSNR threshold level spanning
from 0% to 60%with 5% increment for the Schaefer400 andGlasser360 brain atlases
are [400, 397, 397, 396, 387, 366, 333, 276, 201, 130, 68, 33, 13] and [360, 360, 356,

353, 338, 311, 270, 203, 142, 83, 57, 25, 10], respectively. For both brain atlases, tSNR
levels above 60% led to no suprathreshold ROIs. Abbreviations: rsfMRI resting state
functional magnetic resonance imaging, ROI region of interest, tSNR temporal
signal to noise ratio, PE permutation entropy, MSE multiscale entropy, RangeEn
range entropy, fALFF fractional amplitude of low frequency fluctuations, LCOR
local correlation,GCORglobal correlation, EC eigenvector centrality, wCCweighted
clustering coefficient.

https://doi.org/10.1038/s42003-024-06438-5 Article

Communications Biology |           (2024) 7:771 5



different. For instance, fALFF and wPE were frequently among the most
predictive features across all analysis scenarios. Therefore, we quantified the
similarity between rsfMRI features using an individual identification para-
digm (see Methods). A number of rsfMRI feature pairs showed a high level
of match across subjects (Fig. 5). The pairs wCC-EC, wPE-RangeEnB,
fALFF-LCOR, and MSE-HE were among the most highly matched. The
identification accuracy increased when age, gender, and TIV were either
removed or when rsfMRI features were combined with individual char-
acteristics (Fig. 5b–d). Importantly, identification accuracy decreased as the
number of subjects increased, as opposed to the increase in prediction
accuracy (Fig. 2).

Discussion
A primary goal of neuroscience is to investigate the relationship between
brain dynamics and individual differences in behavior43. Spontaneous
fluctuations in blood oxygenation level-dependent (BOLD) changes mea-
sured by fMRI have been shown to exhibit complex and balanced dynamics
in the time domain referred to as temporal complexity44,45. The interactions
between BOLD changes across brain areas, also known as functional con-
nectivity, provide useful perspectives on brain activity at a large scale. It has
been demonstrated that these functional interactions are crucial for
accomplishing mental tasks and are related to behavioral phenotypes46.

Predictive modeling of neuroimaging data can provide individualized
insights that greatly benefit personalized medicine47,48. This approach is
valuable because it considers the natural variations in human cognition and
brain function. Interventions and treatments customized to a person’s

unique cognitive strengths and weaknesses can be informed bymodeling of
the relationship between individual brain dynamics and behavior. We can
move away from one-size-fits-all methods and provide more accurate
assessments and interventions by creating models that take this diversity
into account.

The goal of the present study was to compare the capacity of rsfMRI
features with age, gender, and TIV for predicting behavioral measures. To
this end, we looked at how well four behavioral phenotypes, fluid intelli-
gence, processing speed, and visual/numericmemory characteristics, can be
predicted using various aspects of rsfMRI dynamics measured by temporal
complexity/functional connectivity features.We demonstrated that, despite
having different mathematical definitions, temporal complexity and func-
tional connectivity features lead to comparable performance across a wide
range of sample sizes20. The results were robust over all combinations of two
brain parcellation atlases (Schaefer400 and Glasser360) and two predictive
models (ridge regression and linear SVM).

Comparing MRI modalities for behavioral prediction has been the
subject of several recent studies49–51. However, many of these studies have
utilized the same datasets, primarily the widely used Human Connectome
Project (HCP) database52, with a medium sample size of fewer than 1500
participants. Behavioral prediction studies that use big datasets such as the
UK Biobank database are still limited in the literature14,40,42. This makes
extrapolating the findings of small sample size studies to larger sample sizes
challenging7. Studies on reproducible brain-wide associationshave alsobeen
established to require the involvement of thousands of participants15. To
take these issues into account, we used a sizable portion of the UK Biobank

Fig. 4 | Prediction of age and gender.Prediction accuracy scores are associated with
nine rsfMRI features and age and gender as targets using scenarios 1–3 of this study
(panels (a) to (c), respectively) using the Schaefer400 brain atlas and ridge regression
predictive modeling (see also Fig. 1b.1–b.3) and Methods). For age prediction, we
considered gender and TIV as confounds, while for gender prediction, we con-
sidered age and TIV as confounds. Age prediction accuracies were computed as the
Spearman correlation between the actual values and predicted values through SVM
modeling. Gender prediction accuracies were computed as the balanced accuracy

through SVM binary classification. Each rsfMRI feature is illustrated in a distinct
color and listed in the figure legend. The population sizes from 100 to 2000 were
increased with a 50-step increment and from 2000 to 20,000 with a 500-step
increment. Abbreviations: rsfMRI resting state functional magnetic resonance
imaging, TIV total intracranial volume, PE permutation entropy, fALFF fractional
amplitude of low frequency fluctuations, LCOR local correlation, GCOR global
correlation, EC eigenvector centrality, CC clustering coefficient.
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database20, varied the sample size from100 to 20,000 subjects, and examined
the effects of sample size scaling on the predictive capacity of rsfMRI tem-
poral complexity and functional connectivity-derived measures for beha-
vioral phenotypic prediction. Increasing the sample size improved the
predictive accuracy, though it reached to a plateau after a certain sample size
(roughly, at aboutNsubject > 2000). This is in linewith the previous cognition

prediction studies using the UK Biobank and other rsfMRI databases
showing that the accuracy of ridge regression modeling reaches a plateau
with increasing sample size40,53. It emphasizes the need to consider the
possibility of variation in the prediction accuracy of behavioral measures
when studying small populations. The predictive ability of rsfMRI temporal
complexity and functional connectivity features stems from the

Fig. 5 | Featurematching of rsfMRI.The extracted features were obtained using the
Schaefer400 brain atlas and fed into linear SVM predictive modeling. aA schematic
example of comparing two rsfMRI features X and Y from the same subject in a
sample. This comparison leads to the computation of an identification accuracy
score (see Methods). b–d Identification accuracy patterns of 10 rsfMRI feature pairs
with above zero matching are associated with three analysis scenarios of this study
(see Fig. 1 as well as Methods). Each pair in the middle row panels has been depicted
in a distinct color, and all pairs are listed in the figure legend. In each figure panel, the
x-axis represents the population size in the analysis, and the y-axis shows the
identification accuracy. The identification analyses were repeated for different
sample sizes in the UK Biobank, ranging fromNsubject = 100 toNsubject = 20,000. The

population sizes from 100 to 2000 were increased with a 50-step increment (see the
light orange shadow in the figure panels) and from 2000 to 20,000 with a 500-step
increment (see the light blue shadow in the figure panels). The color-coded matrices
in the row illustrate the identification accuracy of rsfMRI feature pairs for
Nsubject = 20,000. Abbreviations: rsfMRI resting state functional magnetic resonance
imaging, ROI region of interest, tSNR temporal signal to noise ratio, TIV total
intracranial volume, wPE weighted permutation entropy, MSE multiscale entropy,
RangeEn range entropy, fALFF fractional amplitude of low frequency fluctuations,
LCOR local correlation, GCOR global correlation, eigCent/EC eigenvector cen-
trality, wCC weighted clustering coefficient.
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interconnected neural activity, particularly the spontaneous BOLD fluc-
tuations across brain regions46.Notably, fALFF,wPE, andAUCofRangeEnB
consistently outperformed others in predicting behavioral measures and
demographics. Our identification analysis emphasized the nuanced rela-
tionship between diverse features, revealing that certain features, like fALFF
and wPE, consistently exhibit robust correlation at the individual level
(Fig. 5). Noteworthy feature pairs, such as wCC-EC and wPE-RangeEnB,
showed high similarity but retained distinct information. Altogether, it
suggests that although certain rsfMRI features may have some similarities
across individuals, they also possess distinct information as demonstrated
by their varying predictive abilities. Such a relationship has also been seen in
the characteristics of neurological conditions such as epilepsy, which has
been described as both a disorder of functional networks in the brain and an
abnormality of its dynamics at the same time54.

Combining functional connectivity and temporal complexity mea-
suresmayprovide improvedpredictionof behavioral phenotypes.However,
it is essential to consider potentially high similarity between some of these
rsfMRImeasures as shown by our identification analysis. Highly correlated
features can introduce multicollinearity which may pose challenges for
prediction models, in turn making it challenging to discern contribution of
individual features and resulting in less interpretable models. To effectively
leverage the benefits of combining functional connectivity and temporal
complexity measures, one may consider employing proper techniques that
can deal with the multicollinearity. While combining these measures could
indeed have implications for predictive modeling, we believe that investi-
gating the best strategies for combining thesemeasures, addressingpotential
multicollinearity, and optimizing predictive models extends beyond the
scope of our current study. A comprehensive exploration of such strategies
would require dedicated investigation and represents a valuable avenue for
future research.

The combination of functional connectivity and temporal complexity
measureswith age, gender, andTIVcould synergistically enhancepredictive
capacity, with individual characteristics providing additional information
that complements rsfMRI features towards a more robust modeling. In
contrast, removing individual characteristics using linear regression may
simplify the modeling task by revealing independent individual signals,
eliminating potential interactions, and finally, improving identification
accuracy. It can also let the predictive model focus on the specific infor-
mation that functional connectivity and temporal complexity have col-
lected, leading to more precise identifications.

Depending on the analysis workflows of this study, we either used
rsfMRI features, individual characteristics, or both as input features for
behavioral prediction. The prediction accuracy using age, gender, and TIV
was higher than that of all rsfMRI features. This finding highlights the
importance of considering individual characteristics in the prediction of
behavioral measures, especially when the goal is to maximize predictive
accuracy. Additionally, this finding aligns with a prior study in which the
integration of MRI data and sociodemographic factors systematically
improved the accuracy of predicting age, fluid intelligence, and
neuroticism19. It is also consistent with previous research in the ADHD-200
Global Competition, which found that when performing classification of
ADHD diagnostics, individual characteristic data (site of data collection,
age, gender, handedness, performance IQ, verbal IQ, and full scale IQ)
performed better than a variety of fMRI features18. Overall, the three indi-
vidual characteristics performed better than the combined feature vectors of
size 403 and the 400 rsfMRI features. It implies that neuroimaging-based
features offer additional information to the demographic and socio-
demographic factors for predicting behavior. The combination of individual
characteristics and rsfMRI features may offer an opportunity to harness the
complementary information provided by both types of data. Further
research is needed to explore the potential benefits of integrating individual
characteristics with rsfMRI features in predictive models for behavioral
phenotypes. Individual characteristics may also be handled as potential
confounds when investigating associations between brain activity and
behavior. Additional research into the association between rsfMRI features

and individual characteristics in predictive models is needed to see if this
relationship is vulnerable to confound removal.

Previous studies have shown that some behavioral phenotypes can be
predicted better than others using neuroimaging data7. This is supported by
our prediction results which show that regardless of the rsfMRI features
used and the sample size, the processing speed measure was usually pre-
dicted better than the visual and numerical memory scores. A recent review
of human fluid intelligence prediction using neuroimaging data has
reported an average correlation of 0.15with aCI95% of [0.13, 0.17] across the
fMRI literature55. This is confirmed by our fluid intelligence prediction
results with a maximum correlation score of 0.23 using combined LCOR
and individual characteristics and at very high sample sizes. Contrary to
behavioral phenotypes, age and gender were easier to predict using both
temporal complexity and functional connectivity features, as shown by a
comparison between the prediction accuracy curves. However, gender
prediction using age and TIV was better than age prediction using gender
andTIV.All four analysisworkflowspassed a sanity checkusing the chance-
level prediction of yesterday’s fish consumption.

The issue of noise and artifacts can influence fMRI features, for
example in fALFF which utilizes bandpass filtering of fMRI time series31.
Temporal SNR is ametric for comparing the strength of an interest signal to
the amount of background noise in the time domain56. The tSNR analysis
results of our study indicate that even the rsfMRI features of brain regions
with a relatively low tSNR, which are typically found in deeper areas of the
brain and close to sinus cavities, still contain predictive information about
cognition. It is corroborated by our observation that using more brain
regions, even when their tSNR is rather low, leads to higher accuracy. To
retain the same number of brain regions across individuals, we used the
group-mean tSNR map of the full sample with 20,000 UK Biobank indi-
viduals to threshold subject-specific rsfMRI feature brain maps. This is
because tSNR brain maps do not always agree on the same brain regions
across participants. We believe that the information in this group-mean
tSNR map from a very large sample is so compressed and dimensionally
reduced that any influence of data leakage would be minimal.

Our results show a relatively inverse association between identification
accuracy and prediction accuracy across different sample sizes. While
addingmore subjects improved behavioral phenotypic prediction accuracy,
doing so reduced identification accuracy. This shows that the identification
problem becomes harder as the sample size grows because there are more
chances of obtaining amatchwith another subject thanwith the self. On the
other hand, the prediction problem becomes relatively easier for larger
populations because more information is available for learning. Our results
also suggest that the nine investigated rsfMRI features can be categorized
into various matched pairs. High identification accuracy between wPE and
RangeEnB, HE and MSE, fALFF and LCOR, and wCC and EC, are most
notable. The similar prediction performance of these feature pairs can be
partly explained by the measurements yielding similar individual-level
patterns (as shown by the high identification accuracy), even though they
are conceptually different.

There are a number of limitations that should be considered before
arriving at a solid conclusion. First, we only used two linear predictive
modeling algorithms in this study, so other models might capture different
information. Second, even thoughmanymorevariables, suchashandedness
and genetic factors, could influence the rsfMRI features, we only considered
three individual characteristics in our predictive modeling. Third, we
attempted to address the challenge of accurately quantifying behavioral
phenotypes using some of themost reliable behavioral phenotypes available
in the UK Biobank41. Despite that, these quantitative scores might still be
unreliable and subject to oversimplification57. Unfortunately, standardized
normed scores that account for demographic factors such as age and gender
are not available in the UK Biobank database. Fourth, we only included
cortical areas in our analyses. Using subcortical and cerebellar areas may
provide a more complete picture.

Taken together, imaging-derived features such as rsfMRI temporal
complexity and functional connectivity measures offer complementary
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insights todemographic factors in predicting behavior and cognition.When
constructing predictive models, it is recommended to thoughtfully choose
and prioritize rsfMRI features based on their effectiveness in predicting the
target behavioral phenotypes. Furthermore, the incorporation of demo-
graphic indicators such as age, gender, and TIV is advisable, particularly
when striving for heightened prediction accuracy.

Methods
Data and preprocessing
We used the rsfMRI data of 20,000 unrelated UK Biobank participants
after excluding subjects with mental and behavioral disorders (ICD10,
category F), diseases of the nervous system (ICD10, category G), and cer-
ebrovascular diseases (ICD10, categories I60 to 69). Data management of
the UK Biobank datasets was performed using DataLad58 on JURECA, a
pre-exascale modular supercomputer operated by the Jülich Super-
computing Center at the Forschungszentrum Jülich, Germany. The dura-
tion of each rsfMRI scan was 6minutes (490 time points), with a repetition
time (TR) of 0.735 seconds, an echo time (TE) of 39milliseconds, a voxel size
of 2.4 × 2.4 × 2.4 millimeters, and a field of view of 88 × 88 × 64. The fol-
lowing procedurewas performedon the rsfMRIdatasets as part of a pipeline
developed on behalf of the UK Biobank17: grand-mean intensity normal-
ization of the entire 4D fMRI dataset by a single multiplicative factor;
highpass temporal filtering using Gaussian-weighted least-squares straight
line fitting with σ = 50 seconds; echo planar imaging unwarping; gradient
distortion correction unwarping; and structured artifact removal through
independent component analysis (ICA), followed by an ICA-based X-
noiseifier (ICA-FIX)59–61. No spatial or temporal smoothing was applied to
the fMRI volumes. The preprocessed data files, referred to as filter-
ed_func_data_clean.nii in theUKBiobankdatabase,were normalized to the
MNI space using FSL’s applywarp function with spline interpolation and
parcellated using the Schaefer brain atlas into 400 ROIs (Schaefer400)62 and
using theGlasserbrain atlas into 360ROIs (Glasser360)63. Sinceweneeded a
continuous fMRI time series for the extraction of temporal complexity
features, we did not apply motion scrubbing. Finally, we considered
age, gender, and TIV as individual characteristics in the analyses and
incorporated them into four analysis scenarios illustrated in Fig. 1. The TIV
of each subject was extracted after brain extraction from the T1 image using
the Computational Anatomy Toolbox (CAT12) for SPM64.

Four behavioral phenotypes were selected as the predictive targets
among themost reliableUKBiobankbehavioral phenotypes, includingfluid
intelligence (data field 20016), processing speed (data field 20023), numeric
memory (data field 20240), and visual memory (data field 399)41. Addi-
tionally, an unrelated binary target (fish consumption yesterday—data field
103140) was used as a sanity check of the rsfMRI features in the predictive
modeling scenarios.

Temporal complexity features
HE35 is used to determine whether a time series contains a long-memory
process. It quantifies three different types of trends: (i) values between 0.5
and 1, indicating that the time series is complex (balanced in time) and has
long-range dependence; (ii) values less than 0.5, indicating that the time
series is randomandhas short-range dependence; or (iii) a value close to 0.5,
indicating that the time series is a randomwalkwith nomemory of the past.
HE has been shown to be stable and reproducible across different fMRI
datasets65. In this study, we estimated HE using the rescaled range analysis
technique35. ThewPE36 is a modified version of permutation entropy66, that
captures order relations between time points in a signal and generates an
ordinal pattern probability distribution using an embedding dimension m
and a time delay τ, where the former is the length of the patterns, and the
latter is a lag parameter denoting the number of time points to shift
throughout the time series. In this study, we used the parametersm = 4 and
τ = 1 and normalized thewPE values by dividing them by log2(m!) in order
to get the numbers between0 and1.RangeEnoffers two versions (RangeEnA
and RangeEnB) as modifications to approximative entropy67 and sample
entropy68, respectively. A property of RangeEn is that regardless of the

nature of the signal dynamics, it always reaches 0 at its tolerance value of
r = 137. In light of this, one can obtain a complete trajectory of signal
dynamics in the r-domain using this measure. Therefore, we extracted this
trajectory from each ROI-wise rsfMRI time series and reduced its dimen-
sionality by computing the area under its curve along the r-axis (m = 2).We
have already shown that RangeEn is robust to variations in signal length37,
making it a viable option for relatively short-length time series such as
rsfMRI.MSE is an extension of sample entropy that provides insights into
the complexity of rsfMRI fluctuations over a range of time scales38. The
measure returns a trajectory of sample entropy values across the time scales
1 to τmax. We have already shown that MSE of rsfMRI may be linked to
higher-order cognition27. In this study, we chose the parameters m = 2,
r = 0.5, and τmax = 10 for MSE, as a measure of temporal complexity. We
then reduced its dimensionality by taking the area under its curve and
dividing by τmax. This analysis was performed on parcellated brain regions
using the Schaefer400 and Glasser360 brain atlases.

Functional connectivity features
Wecomputed the functional connectivitymeasures of rsfMRI at two spatial
scales: (i) at the ROI level (EC, wCC) and (ii) first at the voxel level, then
averaged within the ROIs (fALFF, LCOR, GCOR). For the ROI-wise mea-
sures, we characterized functional connectivity between every pair of ROIs
in each rsfMRI dataset using a total of 400 regions for the Schaefer400 brain
atlas62 and 360 regions for the Glasser brain atlas (Glasser360)63 and
extracted the connections using Pearson correlation between mean fMRI
time series34. GCOR serves as a representative of brain-wide correlation
properties and a voxel-level representation of node centrality33. LCOR
measures voxel-level local coherence defined as the average of the correla-
tion coefficients between a voxel and its immediate surroundings (a
Gaussian kernel with FWHM of 25mm)32. Similar to GCOR, LCOR takes
both the strength and sign of functional connections into consideration.
fALFF quantifies the contribution of low frequency fluctuations to the total
frequency range within a given frequency band (here, 0.008-0.09Hz31).
While GCOR and LCOR assess the strength of interregional and local
cooperation by measuring the temporal similarity between voxels, fALFF
evaluates the amplitude of regional neuronal activity. For each subject, the
voxel-wise GCOR, LCOR, and fALFF brain maps were parcellated using
both brain atlases62,63. EC is an ROI-basedmeasure that indicates the impact
of an ROI on the functional brain network34. The EC of the ith ROI corre-
sponds to the ith element in the eigenvector corresponding to the largest
eigenvalue of the ROI-wise functional connectome.Weighted CC quantifies
howmuch the ROIs in the brain network functionally cluster together. This
metric is calculated as the ratio of all triangles in which the ith ROI partici-
pates to all triangles that, theoretically, could be formed given the degree of
the ith ROI’s involvement in the brain’s functional network34. The list of
rsfMRI features in this study is summarized in Table S1 in the Supple-
mentary Materials.

tSNR analysis
In order to investigate the influence of tSNR levels of parcellated rsfMRI
time series and the number of suprathreshold ROIs on the prediction
accuracies of behavioralmeasures,weperformed two analyses: one via tSNR
thresholding and increasing the tSNR levels from 0% to 100% and another
through decreasing the levels of tSNR from 100% to 0%. In fact, tSNR
thresholding was used to control the number of suprathreshold ROIs,
consequently influencing prediction accuracy. The rationale was that if the
two prediction accuracies are similar, then the number of ROIs, and not the
tSNRof the rsfMRI time series, is the primary determinant of the prediction
performance. To this end, we used the Schaefer400 atlas and linear SVM
with heuristic C across three scenarios for confound removal for all rsfMRI
features and prediction targets at Nsubject = 20,000. Finally, we plotted the
prediction accuracies as a function of the number of suprathresholdROIs as
well as the tSNR levels.We calculated tSNR for each brain region as the ratio
between themeanandstandarddeviationof its rsfMRI time series56.This led
to a tSNR brain map for each participant, which we normalized over ROIs
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and later averaged across the entire UKBiobank population. For both brain
atlases, we used the group-average map for thresholding to exclude the
noisiest brain regions at multiple tSNR levels from 0% threshold (i.e., pre-
serving all ROIs for the prediction) to 100%, resulting in no suprathreshold
ROIs. As an example, a tSNR thresholding level of 60% on the Schaefer400
brain atlas leads to 13 suprathreshold ROIs.

Predictive modeling
Following previous studies in the field7,40,42, we chose to use ridge regression
with L2-norm regularization and classification for predictive modeling in
this study. We also explored the robustness of our results by employing
linear SVMwith heuristic choice of the hyperparameterC. Linear SVMwas
chosen as it is a widely used machine learning technique for predictive
modeling and can provide an alternative perspective on the relationships
between demographic and anatomical factors and behavioral phenotypes.
As illustrated inFig. 1(b.1–b.4),wedesigned four analysis scenarios basedon
the role of individual characteristics in predictive modeling. We trained 78
ridge regression and linear SVMmodels for each behavioral phenotype on a
wide range of UK Biobank subjects from Nsubject = 100 to Nsubject = 2,000
with a 50-step increment and fromNsubject = 2000 toNsubject = 20,000 with a
500-step increment and each tSNR level, resulting in a total number of
36504models (9 features × 4 targets × 78 population sizes × 13 tSNR levels)
for each model type. We also trained 78 ridge binary classifiers for each
model type using each rsfMRI feature to predictfish consumption yesterday
(total number of models: 2×9126). In all cases, we estimated the best model
hyperparameter λ of the ridge regression/classification over the following
values: [0, 0.00001, 0.0001, 0.001, 0.004, 0.007, 0.01, 0.04, 0.07, 0.1, 0.4, 0.7, 1,
1.5, 2, 2.5, 3, 3.5, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 100, 150, 200, 300, 500,
700, 1000, 10,000, 100,000, 1,000,000] through grid search. The hyper

parameter C in linear SVM was calculated as C ¼ 1= 1
N Σ

N
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PF
i¼1x

2
i

q

where N is the number of subjects, F is the number of features, and xi
represents the i th z-scored feature value69. For the evaluation of prediction
accuracy, we performed five repeats of 5-fold nested cross-validation using
the scikit-learn70 and Julearn (https://juaml.github.io/julearn/main/index.
html) libraries in Python. For evaluation of the predictive models, we
computed Spearman correlation coefficient between the actual targets and
the model’s predictions. To evaluate the binary classifications, we used
balanced accuracy, a classification performance metric used to evaluate a
model’s predictive accuracy, particularly in situations where there is an
imbalance in the distribution of classes, such as comparing non equisized
populations of males and females. We repeated the predictive modeling for
five targets (four behavioral phenotypes as well as fish consumption yes-
terday) andnine rsfMRI features at a range of sample sizes varying from100
to 20,000. At each sample size, we randomly sampled the data to contain an
equal number ofmales and females.Wedeveloped four predictivemodeling
scenarios based on the role of age, gender, and TIV in our study, as illu-
strated in Fig. 1. These scenarios included (b.1) prediction using rsfMRI
features before removing individual characteristics, (b.2) prediction using
rsfMRI features after treating individual characteristics as confounds and
removing them, (b.3) prediction using combined rsfMRI features and
individual characteristics, and (b.4) prediction using individual character-
istics only. Individual characteristicswere regressed out at the target level for
regression modeling5,7 and at the feature level for the classification
analyses16,71 using linear regression. Confound removal was performed in a
cross-validation consistent manner to avoid data leakage16.

Feature comparison via identification analysis
We adapted the individual identification paradigm from the functional
connectome fingerprinting literature9,72 and applied it to comparing dif-
ferent rsfMRI features of the same subject across a population. In this
context, identification refers to the process of identifying a rsfMRI feature
vector (brainmap)Xhaving thehighest spatial correlationwithY, oneof the
other eight rsfMRI feature maps across the entire population. The identi-
fication accuracy was defined as the proportion of correctly identified

individuals based on matching their two rsfMRI features. The score ranges
between 0 and 1, with higher values indicating a better match. Individual
characteristics were removed from the rsfMRI features at the ROI-level
using linear regression (Fig. 5a).

Data availability
UKBiobank data can be obtained via its standardized data access procedure
(https://www.ukbiobank.ac.uk/). The subject IDs of the UK Biobank data-
base whose data have been used in this study can be obtained from the first
author (A.O.) upon request. Per the policies of theUKBiobank, thefindings
of this study, which utilize imaging and behavioral data, must be submitted
to the UK Biobank team and can be acquired directly from them. All the
analysis results have also been archived on the servers of Research Center
Jülich.

Code availability
Necessary Python codes for reproducing the analysis results of this study
using the UK Biobank datasets are available at: https://github.com/
omidvarnia/Dynamic_brain_connectivity_analysis.
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