001029133 001__ 1029133
001029133 005__ 20250129084140.0
001029133 0247_ $$2doi$$a10.1101/2024.06.07.597666
001029133 037__ $$aFZJ-2024-04989
001029133 1001_ $$0P:(DE-Juel1)180212$$aKüppers, Vincent$$b0$$eCorresponding author$$ufzj
001029133 245__ $$aLower motor performance is linked with poor sleep quality, depressive symptoms, and grey matter volume alterations
001029133 260__ $$c2024
001029133 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738136446_6365
001029133 3367_ $$2ORCID$$aWORKING_PAPER
001029133 3367_ $$028$$2EndNote$$aElectronic Article
001029133 3367_ $$2DRIVER$$apreprint
001029133 3367_ $$2BibTeX$$aARTICLE
001029133 3367_ $$2DataCite$$aOutput Types/Working Paper
001029133 520__ $$aMotor performance (MP) is essential for functional independence and well-being, particularly in later life. However, the relationship between behavioural aspects such as sleep quality and depressive symptoms, which contribute to MP, and the underlying structural brain substrates of their interplay remains unclear. This study used three population-based cohorts of younger and older adults (n=1,950) from the Human Connectome Project-Young Adult (HCP-YA), HCP-Aging (HCP-A), and enhanced Nathan Kline Institute-Rockland sample (eNKI-RS). Several canonical correlation analyses were computed within a machine learning framework to assess the associations between each of the three domains (sleep quality, depressive symptoms, grey matter volume (GMV)) and MP. The HCP-YA analyses showed progressively stronger associations between MP and each domain: depressive symptoms (unexpectedly positive, r=0.13, SD=0.06), sleep quality (r=0.17, SD=0.05), and GMV (r=0.19, SD=0.06). Combining sleep and depressive symptoms significantly improved the canonical correlations (r=0.25, SD=0.05), while the addition of GMV exhibited no further increase (r=0.23, SD=0.06). In young adults, better sleep quality, mild depressive symptoms, and GMV of several brain regions were associated with better MP. This was conceptually replicated in young adults from the eNKI-RS cohort. In HCP-Aging, better sleep quality, fewer depressive symptoms, and increased GMV were associated with MP. Robust multivariate associations were observed between sleep quality, depressive symptoms and GMV with MP, as well as age-related variations in these factors. Future studies should further explore these associations and consider interventions targeting sleep and mental health to test the potential effects on MP across the lifespan.Keywords: Brain structure; Canonical Correlation Analysis; Depressive Symptoms; Mental Health; Motor Performance Behaviour; Sleep Quality.
001029133 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001029133 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001029133 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001029133 588__ $$aDataset connected to CrossRef
001029133 7001_ $$0P:(DE-Juel1)190453$$aBi, Hanwen$$b1
001029133 7001_ $$0P:(DE-Juel1)180537$$aNicolaisen-Sobesky, Eliana$$b2
001029133 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b3
001029133 7001_ $$00000-0002-0119-3276$$aYeo, B. T. Thomas$$b4
001029133 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b5
001029133 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6
001029133 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b7
001029133 773__ $$a10.1101/2024.06.07.597666
001029133 909CO $$ooai:juser.fz-juelich.de:1029133$$pVDB
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180212$$aForschungszentrum Jülich$$b0$$kFZJ
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190453$$aForschungszentrum Jülich$$b1$$kFZJ
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180537$$aForschungszentrum Jülich$$b2$$kFZJ
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b3$$kFZJ
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b5$$kFZJ
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
001029133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b7$$kFZJ
001029133 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001029133 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001029133 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001029133 9141_ $$y2024
001029133 920__ $$lyes
001029133 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001029133 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
001029133 980__ $$apreprint
001029133 980__ $$aVDB
001029133 980__ $$aI:(DE-Juel1)INM-7-20090406
001029133 980__ $$aI:(DE-Juel1)INM-2-20090406
001029133 980__ $$aUNRESTRICTED