001029134 001__ 1029134
001029134 005__ 20250203133151.0
001029134 0247_ $$2doi$$a10.1002/hbm.26753
001029134 0247_ $$2ISSN$$a1065-9471
001029134 0247_ $$2ISSN$$a1097-0193
001029134 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04990
001029134 0247_ $$2pmid$$a38864353
001029134 0247_ $$2WOS$$aWOS:001243999500001
001029134 037__ $$aFZJ-2024-04990
001029134 082__ $$a610
001029134 1001_ $$0P:(DE-Juel1)176971$$aKraljević, Nevena$$b0$$eCorresponding author
001029134 245__ $$aNetwork and state specificity in connectivity‐based predictions of individual behavior
001029134 260__ $$aNew York, NY$$bWiley-Liss$$c2024
001029134 3367_ $$2DRIVER$$aarticle
001029134 3367_ $$2DataCite$$aOutput Types/Journal article
001029134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721726041_20234
001029134 3367_ $$2BibTeX$$aARTICLE
001029134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029134 3367_ $$00$$2EndNote$$aJournal Article
001029134 520__ $$aPredicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.Keywords: brain‐based prediction; brain–behavior relationships; fMRI; functional connectivity; interindividual differences; machine learning.
001029134 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001029134 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029134 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b1$$ufzj
001029134 7001_ $$0P:(DE-Juel1)180212$$aKüppers, Vincent$$b2$$ufzj
001029134 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b3$$ufzj
001029134 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b4$$ufzj
001029134 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b5$$ufzj
001029134 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika I.$$b6$$ufzj
001029134 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.26753$$gVol. 45, no. 8, p. e26753$$n8$$pe26753$$tHuman brain mapping$$v45$$x1065-9471$$y2024
001029134 8564_ $$uhttps://juser.fz-juelich.de/record/1029134/files/Human%20Brain%20Mapping%20-%202024%20-%20Kraljevi%C4%87%20-%20Network%20and%20state%20specificity%20in%20connectivity%E2%80%90based%20predictions%20of%20individual.pdf$$yOpenAccess
001029134 8564_ $$uhttps://juser.fz-juelich.de/record/1029134/files/Human%20Brain%20Mapping%20-%202024%20-%20Kraljevi%C4%87%20-%20Network%20and%20state%20specificity%20in%20connectivity%E2%80%90based%20predictions%20of%20individual.gif?subformat=icon$$xicon$$yOpenAccess
001029134 8564_ $$uhttps://juser.fz-juelich.de/record/1029134/files/Human%20Brain%20Mapping%20-%202024%20-%20Kraljevi%C4%87%20-%20Network%20and%20state%20specificity%20in%20connectivity%E2%80%90based%20predictions%20of%20individual.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029134 8564_ $$uhttps://juser.fz-juelich.de/record/1029134/files/Human%20Brain%20Mapping%20-%202024%20-%20Kraljevi%C4%87%20-%20Network%20and%20state%20specificity%20in%20connectivity%E2%80%90based%20predictions%20of%20individual.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029134 8564_ $$uhttps://juser.fz-juelich.de/record/1029134/files/Human%20Brain%20Mapping%20-%202024%20-%20Kraljevi%C4%87%20-%20Network%20and%20state%20specificity%20in%20connectivity%E2%80%90based%20predictions%20of%20individual.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029134 8767_ $$8W-2024-00489-b$$92024-08-13$$d2024-09-09$$eAPC$$jZahlung erfolgt
001029134 909CO $$ooai:juser.fz-juelich.de:1029134$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176971$$aForschungszentrum Jülich$$b0$$kFZJ
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b1$$kFZJ
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180212$$aForschungszentrum Jülich$$b2$$kFZJ
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b3$$kFZJ
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b4$$kFZJ
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
001029134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich$$b6$$kFZJ
001029134 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001029134 9141_ $$y2024
001029134 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029134 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001029134 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001029134 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001029134 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001029134 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-25
001029134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001029134 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-25
001029134 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
001029134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029134 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-25
001029134 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001029134 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-19$$wger
001029134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:07:28Z
001029134 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:07:28Z
001029134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:07:28Z
001029134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-19
001029134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-19
001029134 920__ $$lyes
001029134 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001029134 9801_ $$aFullTexts
001029134 980__ $$ajournal
001029134 980__ $$aVDB
001029134 980__ $$aUNRESTRICTED
001029134 980__ $$aI:(DE-Juel1)INM-7-20090406
001029134 980__ $$aAPC