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Cloud-based controller architecture for the testing of conventional and
model predictive room heating controllers in a real-world environment

Philipp Althaus1 and Sascha Johnen2 and André Xhonneux3 and Dirk Müller4

Abstract— The prevailing problem of climate change urges
the shift to climate-neutral energy supply and efficient energy
use in all areas of society and industry. The share of energy
usage for room heating is relatively high and therefore an
important field to improve the efficiency as well as CO2-
footprint of the energy supply. Currently, there is still a gap
between scientific knowledge about possible energy savings
by the application of dedicated control strategies and a wide
application in society. Within this work, we contribute to close
this gap by showing the design of a cloud-based, configurable
room heating control algorithm and investigate the effects on
energy demand and occupant comfort in a living-lab field
test. Results indicate that the use of forecasted schedules
in combination with control algorithms to exploit them can
significantly change the thermal demand while maintaining
thermal comfort and is well applicable.

I. INTRODUCTION

Coping with the challenge of climate change requires the
urgent need to decrease greenhouse gas emissions quickly
in a significant amount [1]. The building sector contributes a
share of 36 % regarding the worldwide final energy consump-
tion and 37 % of greenhouse gas emmissions [2]. Thus, it is
a promising field to increase efficiency and introduce energy
sources with low carbon footprint to effectively reduce the
emissions in total. In Germany, for example 70 % of the
energy consumption in the building sector is accounted by
room heating [3].

Several works have shown that the choice of control
algorithms for temperature control in buildings can signif-
icantly influence the thermal comfort as well as the energy
consumption. Exemplary, the relative energy savings were
found to range up to 30 % when applying model predictive
control (MPC) to room heating [4], [5], [6]. Besides studies
examining different controller behaviours in simulation stud-
ies under controlled conditions as e.g. [7], [8], [9], [10], [11],
some studies like [12], [13], [14] also applied and evaluated
control algorithms in real buildings.

Still, the application to several buildings with different
usage type and year of construction and the inclusion of real
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users and their time-varying demand (respectively tempera-
ture setpoints) have been rarely studied yet (c.f. [6]). Thus,
we contribute to close this gap, by first designing a cloud
controller which a) can easily incorporate setpoint wishes by
different sources, b) provides reliable fallback solutions, c)
can apply different controllers for comparison and secondly
applying it to several office buildings in regular use.

II. METHODOLOGY

This work focusses on the architecture at the level of
the cloud controller. Aspects of further elements in the
full automation setup (e.g. the specific implementation of
programmable logic controller (PLC) programs used, com-
munication, bus protocols at field level and actuator devices)
are as well important, but not described in detail here.

The controller architecture needs to deal with four major
tasks, which the modules given in figure 1 relate to:

• First, all relevant data forming the input for the fol-
lowing algorithm steps needs to be collected. This task
is highly dependent on the infrastructure used and is
therefore not explained in detail here.

• Second, the setpoint which shall be considered for
control at which time needs to be determined.

• Third, the control output needs to be calculated for each
actuator considered.

• Fourth, such control output needs to be packaged and
sent in a form which is compatible with the respective
recipients. As this step also depends heavily on the
infrastructure, it is not described in detail.

Data Collector

Setpoint Selector

Control Output Calculator

Sensor, User Interface 
and Actuator Data

Output Packager

Weather Data
Web-based  

User Interface Data

Fig. 1. Schematic on the different modules and the flow of information.

The modular structure of the architecture allows relatively
easy adaptation to other infrastructures and the implementa-
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tion of different control algorithms with significantly fewer
effort.

A. Evaluation of active Setpoint Source and Setpoint Value
over Time

To allow a flexible use and the exploitation of system
knowledge, it is necessary to provide not only the current
temperature setpoint, but also allow the extraction of the
currently expected future temperature setpoint trajectory over
time. Sophisticated control algorithms can utilise the addi-
tional information contained; MPC based algorithms concep-
tually do so and also dedicated rule-based algorithms can be
designed to do. In case that the setpoint shall be adjustable
via different interfaces, moreover all of such setpoint sources
need to be considered. To enable the provision of such com-
plete (future) trajectory information, a structure of several
source evaluators and one builder for a combined schedule
is set up. A schematic is shown in figure 2. Each source
evaluator is responsible to detect user interactions of the
respective source of interaction and to determine the wished
setpoint (trajectory) as well as the timespan ∆tvalid when
such setpoints shall be valid. The builder for an integral,
combined schedule uses the information on validity over time
and desired setpoints over time for all source evaluators. The
source to become active (as well as the related setpoint) is
evaluated dependent on the setpoint validity, the priority and
the activation time of each source. The timestamps which
are included into the combined schedule are configurable.

Source Evaluator 1 
(Priority: High)

Source Evaluator 2 
(Priority: High)
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Source Evaluator n 
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Fig. 2. Schematic of several source evaluators and the trajectory builder.
All source evaluators are run in parallel and compute a setpoint trajectory
and when the respective setpoint is valid (right side). The setpoint trajectory
builder combines such information by the source evaluators to a single, valid
trajectory.

In the specific current setup, users can interact with the
room heating system in the following ways: First of all,

temperature setpoints can be provideded at the electronic
thermostat. Dependent on the infrastructure setup in the
offices, an interaction via a KNX room control panel is
also possible. Moreover, a web-application developed in-
house and called JuControl provides two additional ways to
influence the room temperature: Users can define a schedule
when they plan to be at the office and set a range of minimum
and maximum temperature during that time. Furthermore,
they can also enter a temperature setpoint at any time [15].

The priorities of sources are set in such a way that a
manual definition of a setpoint temperature has the highest
priority; the JuControl schedule has an intermediate priority;
and a fallback schedule the lowest priority. In case a user
interaction occurred to provide a temperature setpoint, the
resulting setpoint thus overrides the setpoints by the schedule
for a certain timespan ∆tvalid, currently set to 8 h. As soon
as another setpoint is given, such interaction overwrites the
previous one. When no such direct setpoint interaction oc-
curred in the given timespan, the setpoint is chosen according
to the schedule provided. For cases, where room users do not
actively use the web-application JuControl, e.g. because not
all users have signed the declaration of consent, a fallback-
schedule is put in place. By this, reasonable setpoints are
provided also when no active user wish was given within
the last ∆tvalid. Using a schedule instead of a single, fix
fallback temperature allows significantly more flexibility and
the possibility to combine aspects of energy savings and
comfort much better.

B. Calculation of the Control Output

For the calculation of the control output, several different
algorithms are set up and evaluated. A first, general dis-
tinction is the kind of command which is generated: In the
given setup, there are the options to give a) a temperature
setpoint only b) a temperature setpoint and a temperature
measurement c) a valve position setpoint. Based on these
possibilities to interact with the electronic thermostat, we
developed different rule-based controllers and a model pre-
dictive controller:

1) Direct setpoint extraction: In such configuration, the
setpoint is looked up from the resulting setpoint trajectory
schedule at the time of controller calculation. In this case,
the actuator (electronic thermostat) uses its own internal
temperature measurement to evaluate an appropriate valve
position. Based on the physical proximity to the hot radiator
and previous evaluations (see also [16]), a control mismatch
is to be expected. Nevertheless, this configuration allows the
general setting of setpoints by different sources and repre-
sents a good fallback mode in case no further information
is available for the room status (e.g. separate temperature
measurement for the room air).

2) Temperature setpoint with pre-heating and measure-
ment: To further increase control quality and comfort for
users, this control approach introduces two additional aspects
at the same time: As a first element, a rule-based pre-heating
phase is introduced. To do so, the temperature schedule is
shifted about the configured pre-heating time ∆tph. For all
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experiments shown in this paper, ∆tph had been set to 1 h.
As a second element, the temperature measurement of a
indoor air quality sensor is used in case it is classified as
valid. In this case, the electronic valve uses this external
measurement, which is typically more accurate and represen-
tative for the temperature perceived by the room occupants,
for internal control instead of its own measurement.

3) P-Control based on pre-heating setpoint and measure-
ment: Extending the previous case (using preheating and
the external temperature measurement), a linear controller
output is calculated, resulting in directly defining the desired
valve position out of the cloud application. By default, the
controller is configured with a proportional gain of Kp of
100%
1.25K in our setup. The controller output is limited between
0 % and 100 % valve opening.

4) Model predictive control: To further exploit system
knowledge in a model-based manner, a MPC is set up. The
optimization problem (OP) solved is given in equation (1).
Aiming for an identifiable model and fast optimization capa-
bilities, the structure of the underlying dynamic model is kept
small and in Hammerstein form. The linear part of the Ham-
merstein model is implemented as a single-node RC model,
where the state x represents the room temperature. The
transformed input νu contains the supplied heatflux Q̇sup

and the transformed disturbance inputs νz are considered as
the ambient air temperature Taa (cf equations (2),(4)). The
transformation function fu is chosen as piecewise linear for-
mulation. Even though such formulation would still allow a
direct mixed integer linear program (MILP) or mixed integer
quadratic program (MIQP) formulation of the complete OP,
the hammerstein form is kept to enable the simple exchange
of the nonlineariety. Exemplary, an alternative formulation as
sigmoid function as shown in equation (3) can be selected.1

The cost function aims to minimize the consumed energy
while keeping the room temperature between a lower and
upper limit for the set of all considered timesteps K.2 The
first part of the cost function holds linear and quadratic
terms of the supplied heatflux. The quadratic terms also
allow to distribute the heatflux more evenly if several radi-
ators with different maximum heatflux are present. The two
further parts introduce mixed integer linear cost terms in
big-M formulation for the temperature range violation. The
comfort temperature limits (xupper, xlower) are determined
based on the given combined temperature schedule over
time. To avoid the violation of the lower limit forced by
the avoidance of violating the upper limit in time spans
of changing temperature boundaries, the maximum of the
upper limit from the schedule (xupper,sch) is calculated for
a two-sided time-window as described in equation (5). The
formulation as soft constraints avoids infeasabilities even
when a measured temperature would exceed such bounds.
Further constraints deal with the starting value of the state
vector, the incorporation of the linear dynamics and bound
the input heatflux. To apply the output of the optimization,

1As such function is continuous, it allows the formulation of a continuous
identification problem (not detailed here).

2Time-dependencies in constraints are omitted for reasons of readability.

the input u is computed by the inverse of fu. For the parts of
the piecewise linear formulation, where the original function
is constant and thus not invertible, constant values of 0 %
respectively 100 % are taken for the inverse.

ν∗u =min
νu,x

(fc (x, νu, xlower, xupper, νz, x0))

s.t. :

fc = fc,u + fc,x,cont + fc,x,disc

fc,u =
∑
tk∈K

(
Wu,l · νu(tk) +Wu,q · ν2u(tk)

)
fc,x,cont =

∑
tk∈K

(
Wx,cont,l · xdiff,l(tk)

+Wx,cont,u · xdiff,u(tk)
)

fc,x,disc =
∑
tk∈K

(
Wx,disc,l · yx,l(tk)

+Wx,disc,u · yx,u(tk)
)

K = {tstart, ..., tend}
x(tstart) = x0

˙⃗x = A · x⃗+B1 · ν⃗u +B2 · ν⃗z
ν⃗u,lower ≤ ν⃗u ≤ ν⃗u,upper

xdiff,l ≥ (xlower − x)

xdiff,l ≥ 0

xdiff,u ≥ (x− xupper)

xdiff,u ≥ 0

Mx,l · yx,l ≥ (xlower − x) , yx,l ∈ {0; 1}
Mx,u · yx,u ≥ (x− xupper) , yx,u ∈ {0; 1}

(1)

ν⃗u =
[
Q̇sup

]
=

[
fu (u)

]
fu =


0 , u < kl

νu,upper · u−kl

kr−kl
, kl ≤ u ≤ kr

νu,upper , u > kr

(2)

ν⃗u,sig =

[
1

1+e
−4·

u− kl−kr
2

kr−kl

· Q̇sup,max

]
(3)

ν⃗z =
[
Taa

]
(4)

xupper (τ) =max (xupper,sch(t))

, τ −∆tl ≤ t ≤ τ +∆tr
(5)

The prediction horizon tmpc,h considered is set to 12 h.
The matrices A, B1, B2 as well as the parameters kl and
kr have been identified by solving an OP to fit data of
seven days. For the specific cost function, the weights are
set as follows: Wu,l = 0.01 1

kWs , Wu,q = 0.0001 1
kWs

2,
Wx,cont,l = 10 1

Ks , Wx,cont,u = 10 1
Ks , Wx,disc,l = 0,

Wx,disc,u = 0. Additional parameters have been set like:
νu,lower = 0 kW , νu,upper = 2.5 kW , Mx,u = 50 K,
Mx,l = 50 K, ∆tl = 4 h, ∆tr = 4 h. The OP is formulated
under use of Pyomo [17], [18] and solved with Gurobi [19].
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C. Use Case and Test-Bed Setup

The real-live tests are executed within a test-bed set up
within the Living Lab Energy Campus project (LLEC) at
the Forschungszentrum Jülich. The selection of buildings and
equipment is described in detail in [16].3 The cloud-based
control application in this work relies on the following main
components to close the control-loop:

• Field devices (sensors and actuators) communicating via
the field bus protocols4 [operational technology layer];

• a programmable logic controller (PLC) to run the low-
level automation [edge layer];

• communication services between applications and edge
layer as well as a database to store all operation data
[data distribution layer];

• further applications to manage devices, metadata and
user inputs [application layer].

An overview to the architecture of the infrastructure and
communication technology (ICT) setup as well as the nec-
essary software services and data models to reach operation
by means of Internet of Things (IoT) is provided in [20].
As described before, users can interact with the system via
appliances in rooms and via the web-application JuControl.
Details regarding such application are presented in [15].

To allow a robust operation, several fallback-actions are
put in place: In case of failure at the cloud controller level
or the connecting services between cloud controller and PLC,
the PLC program provides fallback possibilities, so the users
can still set temperature set points at the appliances in their
rooms. In case the PLC fails, the installed actuators switch
to a stand-alone operation mode.

III. RESULTS

The data on which the results are based have been
recorded in different configurations of operation. Appliances
at room level have been installed since 2020. Building-
wide energy consumption data is available also for previous
years. Experiments have been conducted under real-world
conditions and normal use of the equipped offices. The
control algorithms under test are varied, but always have
to consider providing an appropriate level of comfort and
energy demand. From the various controller configurations
being tested and experiments carried out several comparisons
can be drawn, some of which are described in the following.

First of all, a comparison can be made between the
heating demand before (with conventional thermostats) and
after the installation of the electronic thermostats with the
corresponding (ICT) infrastructure. Figure 3 shows exem-
plary time spans before and after the installation of electric
thermostats. The operation shown in subplot b) resulted
from the application of the control algorithm described
in the section ”Temperature setpoint with pre-heating and
measurement”. The demand data is taken in one-minute
interval and filtered with a moving average of ten minutes

3After finalization of the retrofit with sensors and actuators, about 700
rooms in 15 different buildings will be included in total.

4Specifically, EnOcean and KNX are used.
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Fig. 3. Comparison of outdoor (outd.) temperature and normalized demand
of a building in two phases: Subplot a) refers to operation with conventional
thermostats (time range in 2019). Subplot b) corresponds to operation with
electronic thermostats and the cloud controller (time range in 2023).

to each side. The outdoor temperature data is collected from
the German Weather Service (DWD) with a time resolution
of ten minutes from the nearest weather station in Aachen-
Orsbach [21]. The normalization of the heating demand is
taken against the temperature difference between 21 ◦C and
the outdoor temperature.5 It becomes well visible, that the
new controller enables a significant reduction in demand at
night. This effect can be explained by the setpoint reduction
during night which is consistently applied for all thermostats
in the new configuration while likely not all users have
reduced the setpoints in the configuration with conventional
thermostats. A steep increase in the morning to pre-heat the
offices is visible on both days. In the afternoon, the demand
is slightly lowered due to higher outside temperatures and
solar radiation. The oscillation visible in the consumption
data for the time span in 2019 but not in 2023 can be
explained by a replacement of equipment for the building-
wide supply station which effected the control quality of the
supply temperature but not the general supply demand.
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Fig. 4. Exemplary trajectories of given temperature schedules, sent
temperature setpoint, measured room air temperature and valve opening.

The reduced demand during night hours can also be found
in good correspondence to data at room level: Figure 4
shows data for an exemplary room which was operated in

5As indoor temperature measurments or temperature setpoints are not
available for both time spans, the same value is assumed in both cases.
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the control configuration described in the section ”Temper-
ature setpoint with pre-heating and measurement”. The first
subplot shows the schedule trajectory for a minimum and
maximum desired temperature in the respective room. The
control algorithm uses the mean of minimum and maximum
values and shifts it forward one hour. At five a clock in
the morning, the (shifted) temperature setpoint exceeds the
measured temperature and the electronic thermostat opens
the valve. The same behaviour is seen when the setpoint
is further lifted to 19 ◦C. After that, the valve can be
kept closed most of the time. In the evening, the scheduled
temperature wishes are lower again due to non-occupancy
and thereby support the aim of reducing energy demand. The
measured temperature remains above the resulting setpoint
until midnight and the valve remains closed.
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Fig. 5. Temperature derivative and valve opening, example 1.
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Fig. 6. Temperature derivative and valve opening, example 2.

Besides the fact that the thermal behaviour of rooms
is typically slow and the heating system is typically low-
actuated (cf. e.g. the rise time in figure 4), various rooms also
differ in their thermal behaviour. This becomes well visible
when looking to necessary pre-heating times respectively the
time derivative of the room air temperature ∂Tair

∂t : For some
rooms the initially selected pre-heating time of 1 h seems
to be well suited. Other rooms do need longer for heat-up
and therefore do not reach their setpoint at the originally
desired time. Figures 5 and 6 show the time derivatives of
the room air temperature in two different rooms. The time
series were recorded in 2023. The derivative is calculated
numerically from the recorded sensor data as follows: All
data points recorded are used, the time series is resampled
to an interval time of one minute with linear interpolation

for missing values. The central difference quotient is used
to calculate the derivative. As the sensor data resolution of
0.2 K is quite large and the raw derivative is noisy as a result,
additionally a moving average operation with 45 minutes to
each side is performed.

The derivative in example 1 reaches a value of approx-
imately 0.54 K

h while example 2 only shows these values
as an absolute maximum and the mean value at times of
fully opened valves are near or lower to 0.36 K

h . This
aspect demonstrates the typical advantages and disadvantages
of rule-based control: While in most rooms a comfortable
temperature can be restored in time after lowering the room
temperature during absence to save energy with the parame-
terization used in the controller, the selected parameterization
is not suitable for some rooms. Moreover, the tuning needs
to balance the counteracting aspects of comfort and energy
demand. Keeping the same parameterization for all rooms,
enlarging the pre-heating time could decrease the number of
rooms not reaching the desired temperature setpoint in time,
while wasting energy in other rooms heated too early.

To further improve comfort and decrease energy de-
mand, model-based control approaches like MPC can exploit
system knowledge explicitly. Fitting the model inside the
MPC based on recorded data upfront the application of
the controller results in an overall closed-loop behaviour
which typically anticipates the system behaviour and the
expected upcoming temperature wishes well. Figure 7 shows
exemplary data for another room within March 2024. The
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Fig. 7. Temperatures and valve opening during MPC operation.

upper subplot shows the scheduled temperature limits, the
preprocessed upper limit (cf. equation (5)) and the measured
temperature. The lower subplot gives the trajectory of the
valve opening as reported by one of the two actuators
available in the room of this experiment. The second actuator
has been operated in the same manner. Due to the fact that
the actuators are connected via EnOcean and communicate
at discrete times only, a slight delay of at maximum five
minutes between the valve opening as commanded by the
cloud controller and the individual valve positions can occur
in the used setup.

Several aspects appear from the specific example: In
general, the dynamics of the thermal behaviour is captured
and the temperature is successfully kept inside the given
boundaries during working time. The operation close to the
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lower bound of 20.5 ◦C correlates well with the cost function
containing a term of the applied heatflux. A slight model
mismatch is visible at the first time this boundary value
is set. The controller reacts to this by fully opening the
valve as expected. In times of upper bound values of 17 ◦C,
these are exceeded as the room did not cool down as much.
Compared to the previously presented control approach, the
valve position is operated significantly more at intermediate
values, indicating the adapted heatflux output. The controller
also opens the valve fully when full heating power is required
including short times, when a sensor measurement below the
lower limit is reported. Moreover, considering the actually
measured state (temperature) gives the opportunity to keep
the temperature at a lower level for a longer time before a
positive step in the lower temperature limit compared to e.g.
the presented rule-based control with pre-heating, when the
temperature did not fall to the lower limit during unoccupied
times. In the result, more energy savings can be gained.
Such behaviour especially comes into account, when the
room temperature does not fall to the lower limit during
unoccupied (night) times, e.g. during spring or autumn and
in well insulated buildings. Most importantly, the trajectory
planning decision and the control action decision are covered
by the OP solved. Thus, the trajectory planning does no
longer need to rely on dedicated rules according to which
a trajectory is calculated seperately, but the structure and
an interpretable weighting of elements of the cost function
implicitly influence the trajectory of operation. Still, also
such more abstract decisions need to be taken with care.
In our use case, for example the time-window for lifting the
upper limit might be extended even further.

IV. CONCLUSIONS
Overall, the presented modular structure proved to be

beneficial for the development and evaluation of control
algorithms in living labs of larger scale. The controller
architecture enabling several ways for user interaction has
shown to successfully combine long-term ahead assumptions
(schedules) and short-term user wishes, either via interaction
with appliances or the web-application JuControl.

The experiments with different controllers in our setup
have shown, that the use of schedules providing the (future)
temperature setpoint wishes of users can significantly save
energy and improve the comfort in the same time. As
expected by control theory, the use of an external temperature
sensor improved control quality. This also applies to the
selected wireless sensors, which provide temperature values
relatively seldom. The rule-based controllers were capable
to exploit implicit knowledge of the system behaviour (e.g.
required time to heat up a room) in combination with the
provided temperature setpoint schedules. Still, full potential
to exploit system knowledge and setpoint schedules to satisfy
comfort and energy aspects best is seen using MPC.

Future work is going to extend the experiment analysis
comparing variations in additional aspects and multiple as-
pects at once. Moreover, the MPC algorithm is going to be
improved based on the analysis results.
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