001029206 001__ 1029206
001029206 005__ 20250203133152.0
001029206 0247_ $$2doi$$a10.1088/1361-6668/ad637d
001029206 0247_ $$2ISSN$$a0953-2048
001029206 0247_ $$2ISSN$$a1361-6668
001029206 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05022
001029206 0247_ $$2WOS$$aWOS:001275379400001
001029206 037__ $$aFZJ-2024-05022
001029206 041__ $$aEnglish
001029206 082__ $$a530
001029206 1001_ $$0P:(DE-HGF)0$$aZimmermann, Erik$$b0
001029206 245__ $$aTopological insulator based axial superconducting quantum interferometer structures
001029206 260__ $$aBristol$$bIOP Publ.$$c2024
001029206 3367_ $$2DRIVER$$aarticle
001029206 3367_ $$2DataCite$$aOutput Types/Journal article
001029206 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1722339903_30926
001029206 3367_ $$2BibTeX$$aARTICLE
001029206 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029206 3367_ $$00$$2EndNote$$aJournal Article
001029206 500__ $$aDeutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 - 390534769German Federal Ministry of Education and Research (BMBF) via the Quantum Futur project 'MajoranaChips' (Grant No. 13N15264) within the funding program Photonic Research Germany
001029206 520__ $$aNanoscale superconducting quantum interference devices are fabricated in-situ from a single Bi_0.26Sb_1.74Te_3 nanoribbon that is defined using selective-area growth and contacted with superconducting Nb electrodes via a shadow mask technique. We present h/2e magnetic flux periodic interference in both, fully and non-fully proximitized nanoribbons. The pronounced oscillations are attributed to interference effects of coherent transport through the topological surface states encompassing the cross-section of the nanoribbon.
001029206 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001029206 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029206 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001029206 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001029206 7001_ $$0P:(DE-Juel1)171826$$aRehman Jalil, Abdur$$b1
001029206 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b2
001029206 7001_ $$0P:(DE-Juel1)187581$$aKarthein, Jan$$b3
001029206 7001_ $$0P:(DE-Juel1)186071$$aFrohn, Benedikt$$b4
001029206 7001_ $$0P:(DE-Juel1)180161$$aBehner, Gerrit$$b5
001029206 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b6
001029206 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b7
001029206 7001_ $$0P:(DE-Juel1)156529$$aNeumann, Elmar$$b8
001029206 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b9
001029206 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b10
001029206 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b11
001029206 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b12$$eCorresponding author
001029206 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ad637d$$gVol. 37, no. 8, p. 085028 -$$n8$$p085028 -$$tSuperconductor science and technology$$v37$$x0953-2048$$y2024
001029206 8564_ $$uhttps://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.pdf$$yOpenAccess
001029206 8564_ $$uhttps://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.gif?subformat=icon$$xicon$$yOpenAccess
001029206 8564_ $$uhttps://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029206 8564_ $$uhttps://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029206 8564_ $$uhttps://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029206 8767_ $$d2025-01-22$$eHybrid-OA$$jPublish and Read
001029206 909CO $$ooai:juser.fz-juelich.de:1029206$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b1$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b2$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187581$$aForschungszentrum Jülich$$b3$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186071$$aForschungszentrum Jülich$$b4$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180161$$aForschungszentrum Jülich$$b5$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b6$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b7$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156529$$aForschungszentrum Jülich$$b8$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b9$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b10$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b11$$kFZJ
001029206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b12$$kFZJ
001029206 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001029206 9141_ $$y2024
001029206 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029206 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001029206 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001029206 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001029206 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001029206 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001029206 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001029206 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029206 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-06$$wger
001029206 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2022$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
001029206 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
001029206 920__ $$lyes
001029206 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001029206 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x1
001029206 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001029206 9801_ $$aFullTexts
001029206 980__ $$ajournal
001029206 980__ $$aVDB
001029206 980__ $$aUNRESTRICTED
001029206 980__ $$aI:(DE-Juel1)PGI-9-20110106
001029206 980__ $$aI:(DE-Juel1)HNF-20170116
001029206 980__ $$aI:(DE-82)080009_20140620
001029206 980__ $$aAPC