001     1029206
005     20250203133152.0
024 7 _ |a 10.1088/1361-6668/ad637d
|2 doi
024 7 _ |a 0953-2048
|2 ISSN
024 7 _ |a 1361-6668
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05022
|2 datacite_doi
024 7 _ |a WOS:001275379400001
|2 WOS
037 _ _ |a FZJ-2024-05022
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Zimmermann, Erik
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Topological insulator based axial superconducting quantum interferometer structures
260 _ _ |a Bristol
|c 2024
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722339903_30926
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 - 390534769German Federal Ministry of Education and Research (BMBF) via the Quantum Futur project 'MajoranaChips' (Grant No. 13N15264) within the funding program Photonic Research Germany
520 _ _ |a Nanoscale superconducting quantum interference devices are fabricated in-situ from a single Bi_0.26Sb_1.74Te_3 nanoribbon that is defined using selective-area growth and contacted with superconducting Nb electrodes via a shadow mask technique. We present h/2e magnetic flux periodic interference in both, fully and non-fully proximitized nanoribbons. The pronounced oscillations are attributed to interference effects of coherent transport through the topological surface states encompassing the cross-section of the nanoribbon.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Rehman Jalil, Abdur
|0 P:(DE-Juel1)171826
|b 1
700 1 _ |a Schleenvoigt, Michael
|0 P:(DE-Juel1)171405
|b 2
700 1 _ |a Karthein, Jan
|0 P:(DE-Juel1)187581
|b 3
700 1 _ |a Frohn, Benedikt
|0 P:(DE-Juel1)186071
|b 4
700 1 _ |a Behner, Gerrit
|0 P:(DE-Juel1)180161
|b 5
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 6
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 7
700 1 _ |a Neumann, Elmar
|0 P:(DE-Juel1)156529
|b 8
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 9
700 1 _ |a Lüth, Hans
|0 P:(DE-Juel1)128608
|b 10
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 11
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 12
|e Corresponding author
773 _ _ |a 10.1088/1361-6668/ad637d
|g Vol. 37, no. 8, p. 085028 -
|0 PERI:(DE-600)1361475-7
|n 8
|p 085028 -
|t Superconductor science and technology
|v 37
|y 2024
|x 0953-2048
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029206/files/Zimmermann_2024_Supercond._Sci._Technol._37_085028.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029206
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186071
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156529
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: IOP Publishing 2022
|2 APC
|0 PC:(DE-HGF)0107
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SUPERCOND SCI TECH : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)HNF-20170116
|k HNF
|l Helmholtz - Nanofacility
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)HNF-20170116
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21