001029324 001__ 1029324
001029324 005__ 20250203133152.0
001029324 0247_ $$2doi$$a10.1016/j.future.2024.07.009
001029324 0247_ $$2ISSN$$a0167-739X
001029324 0247_ $$2ISSN$$a1872-7115
001029324 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05051
001029324 0247_ $$2WOS$$aWOS:001281744600001
001029324 037__ $$aFZJ-2024-05051
001029324 041__ $$aEnglish
001029324 082__ $$a004
001029324 1001_ $$0P:(DE-Juel1)194805$$aPuri, Rishabh$$b0$$eCorresponding author
001029324 245__ $$aOn the choice of physical constraints in artificial neural networks for predicting flow fields
001029324 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001029324 3367_ $$2DRIVER$$aarticle
001029324 3367_ $$2DataCite$$aOutput Types/Journal article
001029324 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723193517_24688
001029324 3367_ $$2BibTeX$$aARTICLE
001029324 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029324 3367_ $$00$$2EndNote$$aJournal Article
001029324 520__ $$aThe application of Artificial Neural Networks (ANNs) has been extensively investigated for fluid dynamic problems. A specific form of ANNs are Physics-Informed Neural Networks (PINNs). They incorporate physical laws in the training and have increasingly been explored in the last few years. In this work, the prediction accuracy of PINNs is compared with that of conventional Deep Neural Networks (DNNs). The accuracy of a DNN depends on the amount of data provided for training. The change in prediction accuracy of PINNs and DNNs is assessed using a varying amount of training data. To ensure the correctness of the training data, they are obtained from analytical and numerical solutions of classical problems in fluid mechanics. The objective of this work is to quantify the fraction of training data relative to the maximum number of data points available in the computational domain, such that the accuracy gained with PINNs justifies the increased computational cost. Furthermore, the effects of the location of sampling points in the computational domain and noise in training data are analyzed. In the considered problems, it is found that PINNs outperform DNNs when the sampling points are positioned in the Regions of Interest. PINNs for predicting potential flow around a Rankine oval have shown a better robustness against noise in training data compared to DNNs. Both models show higher prediction accuracy when sampling points are randomly positioned in the flow domain as compared to a prescribed distribution of sampling points. The findings reveal new insights on the strategies to massively improve the prediction capabilities of PINNs with respect to DNNs.
001029324 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001029324 536__ $$0G:(DE-Juel1)JLESC-20150708$$aJLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)$$cJLESC-20150708$$fJLESC$$x1
001029324 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x2
001029324 588__ $$aDataset connected to DataCite
001029324 7001_ $$0P:(DE-HGF)0$$aOnishi, Junya$$b1
001029324 7001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b2
001029324 7001_ $$0P:(DE-Juel1)188513$$aSarma, Rakesh$$b3
001029324 7001_ $$0P:(DE-HGF)0$$aTsubokura, Makoto$$b4
001029324 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b5
001029324 773__ $$0PERI:(DE-600)2020551-X$$a10.1016/j.future.2024.07.009$$gVol. 161, p. 361 - 375$$p361 - 375$$tFuture generation computer systems$$v161$$x0167-739X$$y2024
001029324 8564_ $$uhttps://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.pdf$$yOpenAccess
001029324 8564_ $$uhttps://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.gif?subformat=icon$$xicon$$yOpenAccess
001029324 8564_ $$uhttps://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029324 8564_ $$uhttps://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029324 8564_ $$uhttps://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029324 909CO $$ooai:juser.fz-juelich.de:1029324$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001029324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b2$$kFZJ
001029324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188513$$aForschungszentrum Jülich$$b3$$kFZJ
001029324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b5$$kFZJ
001029324 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001029324 9141_ $$y2024
001029324 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001029324 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001029324 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029324 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001029324 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001029324 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001029324 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001029324 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001029324 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-17
001029324 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001029324 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001029324 920__ $$lyes
001029324 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001029324 980__ $$ajournal
001029324 980__ $$aVDB
001029324 980__ $$aUNRESTRICTED
001029324 980__ $$aI:(DE-Juel1)JSC-20090406
001029324 9801_ $$aFullTexts