001     1029324
005     20250203133152.0
024 7 _ |a 10.1016/j.future.2024.07.009
|2 doi
024 7 _ |a 0167-739X
|2 ISSN
024 7 _ |a 1872-7115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05051
|2 datacite_doi
024 7 _ |a WOS:001281744600001
|2 WOS
037 _ _ |a FZJ-2024-05051
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Puri, Rishabh
|0 P:(DE-Juel1)194805
|b 0
|e Corresponding author
245 _ _ |a On the choice of physical constraints in artificial neural networks for predicting flow fields
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1723193517_24688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The application of Artificial Neural Networks (ANNs) has been extensively investigated for fluid dynamic problems. A specific form of ANNs are Physics-Informed Neural Networks (PINNs). They incorporate physical laws in the training and have increasingly been explored in the last few years. In this work, the prediction accuracy of PINNs is compared with that of conventional Deep Neural Networks (DNNs). The accuracy of a DNN depends on the amount of data provided for training. The change in prediction accuracy of PINNs and DNNs is assessed using a varying amount of training data. To ensure the correctness of the training data, they are obtained from analytical and numerical solutions of classical problems in fluid mechanics. The objective of this work is to quantify the fraction of training data relative to the maximum number of data points available in the computational domain, such that the accuracy gained with PINNs justifies the increased computational cost. Furthermore, the effects of the location of sampling points in the computational domain and noise in training data are analyzed. In the considered problems, it is found that PINNs outperform DNNs when the sampling points are positioned in the Regions of Interest. PINNs for predicting potential flow around a Rankine oval have shown a better robustness against noise in training data compared to DNNs. Both models show higher prediction accuracy when sampling points are randomly positioned in the flow domain as compared to a prescribed distribution of sampling points. The findings reveal new insights on the strategies to massively improve the prediction capabilities of PINNs with respect to DNNs.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)
|0 G:(DE-Juel1)JLESC-20150708
|c JLESC-20150708
|f JLESC
|x 1
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Onishi, Junya
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 2
700 1 _ |a Sarma, Rakesh
|0 P:(DE-Juel1)188513
|b 3
700 1 _ |a Tsubokura, Makoto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 5
773 _ _ |a 10.1016/j.future.2024.07.009
|g Vol. 161, p. 361 - 375
|0 PERI:(DE-600)2020551-X
|p 361 - 375
|t Future generation computer systems
|v 161
|y 2024
|x 0167-739X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029324/files/1-s2.0-S0167739X24003728-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029324
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177985
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21