
Future Generation Computer Systems 161 (2024) 361–375

A
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the choice of physical constraints in artificial neural networks for
predicting flow fields
Rishabh Puri a,c,∗, Junya Onishi b, Mario Rüttgers a, Rakesh Sarma a, Makoto Tsubokura b,
Andreas Lintermann a

a Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich, 52425, Germany
b RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Hyogo, Japan
c Engler-Bunte Institute, Combustion Technology, Karlsruhe Institute for Technology, Engler-Bunte Ring 7, Karlsruhe, 76131, Germany

A R T I C L E I N F O

Keywords:
Physics-informed neural networks
Simplified Navier–Stokes equations
Partial differential equations
Fluid dynamics
Unsteady flow

A B S T R A C T

The application of Artificial Neural Networks (ANNs) has been extensively investigated for fluid dynamic
problems. A specific form of ANNs are Physics-Informed Neural Networks (PINNs). They incorporate physical
laws in the training and have increasingly been explored in the last few years. In this work, the prediction
accuracy of PINNs is compared with that of conventional Deep Neural Networks (DNNs). The accuracy of a
DNN depends on the amount of data provided for training. The change in prediction accuracy of PINNs and
DNNs is assessed using a varying amount of training data. To ensure the correctness of the training data, they
are obtained from analytical and numerical solutions of classical problems in fluid mechanics. The objective of
this work is to quantify the fraction of training data relative to the maximum number of data points available in
the computational domain, such that the accuracy gained with PINNs justifies the increased computational cost.
Furthermore, the effects of the location of sampling points in the computational domain and noise in training
data are analyzed. In the considered problems, it is found that PINNs outperform DNNs when the sampling
points are positioned in the Regions of Interest. PINNs for predicting potential flow around a Rankine oval
have shown a better robustness against noise in training data compared to DNNs. Both models show higher
prediction accuracy when sampling points are randomly positioned in the flow domain as compared to a
prescribed distribution of sampling points. The findings reveal new insights on the strategies to massively
improve the prediction capabilities of PINNs with respect to DNNs.
1. Introduction

Since the scientific revolution in the 16th and 17th centuries, sci-
entists try to express nature in terms of equations. The dynamics of
fluid flow is described through a set of Partial Differential Equations
(PDEs), known as the Navier–Stokes equations [1,2]. Although some
simplified problems in fluid mechanics have analytical solutions, the
solution to the Navier–Stokes equations can only be approximated using
numerical methods that are solved in a discretized domain. The resolu-
tion required for these discretizations in space and time to sufficiently
resolve the flow features increases with the complexity and parameters
of the underlying flow, for instance with high Reynolds numbers.

In the second half of the 20th century, the advent of supercomputers
provided a boost to the development of numerical methods and compu-
tational models to approximate fluid flow behavior allowing large scale
computations for real-world problems. Since then, the complexity of
Computational Fluid Dynamics (CFD) models and the capacity of High-
Performance Computing (HPC) systems have increased many times

∗ Corresponding author at: Engler-Bunte Institute, Combustion Technology, Karlsruhe Institute for Technology, Engler-Bunte Ring 7, Karlsruhe, 76131, Germany.
E-mail address: rishabh.puri@kit.edu (R. Puri).

over. Depending on the order of accuracy of these CFD models, the so-
lutions obtained by solving the temporally- and/or spatially-discretized
governing equations, lead to varying errors in the computed flow fields.
The desired accuracy determines the computational costs and, hence,
highly-resolved simulations are expensive.

Artificial Neural Networks (ANNs) have the potential to comple-
ment, improve and even replace conventional CFD methods [3]. These
deep learning-based NNs can further be categorized as data-driven
or physics-informed. Data-driven Deep Neural Networks (DNNs) can
be trained with spatial coordinates or temporal data of a domain as
input to the network, where flow quantities such as the velocity or
pressure fields, derived from analytical solutions, experimental results
or CFD simulations, are used as ground truth [4]. Once trained, such
purely data-driven DNNs can be employed to predict the velocity or
pressure fields of the complete domain, while delivering results close
to the reference data. These DNNs have to learn an approximation of
vailable online 9 July 2024
167-739X/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.future.2024.07.009
Received 31 December 2023; Received in revised form 26 May 2024; Accepted 4 J
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

uly 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:rishabh.puri@kit.edu
https://doi.org/10.1016/j.future.2024.07.009
https://doi.org/10.1016/j.future.2024.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.07.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.
the underlying physics while training on ground truth generated from
flow solutions. Compared to numerical solvers, these DNNs can predict
solutions faster [5]. For certain problems, they may, however, suffer
from physical inconsistencies or violate the governing equations [6].

Different neural network (NN) architectures can be employed for
DNNs used in fluid mechanics. Convolutional Neural Networks (CNNs)
are commonly used for data-driven solutions of problems in fluid
mechanics, which are solved mainly on cartesian grids [5,7]. Owing
to the filters, CNNs are able to extract important multi-scale features
from a large dataset. CNNs with encoder–decoder architectures can be
used for evaluating steady state flow fields [5]. Matsuo et al. [8] used a
combination of 2D and 3D CNNs to reconstruct a 3D flow field around
a square cylinder while training on sparse 2D data. Sekar et al. [9]
proposed to train an encoder–decoder CNN to extract the geometric pa-
rameters of an airfoil while taking an image of a two-dimensional airfoil
contour as input. The sequential model shows good prediction results
while training on large CFD datasets. U-nets are also encoder–decoder
based fully connected CNNs, where encoder and decoder layers are
connected using skip connections [10]. By introducing skip connections
in the fully connected layers, U-Nets are able to reproduce both high-
and low-level features [11]. Generative models have enabled improved
predictions of results not previously used for DNN training. Jolaade
et al. [12] evaluated both a Generative Adversarial Network (GAN) and
an Adversarial Auto-Encoder (AAE) for predicting the evolution in time
of highly nonlinear fluid flow. The authors find that both models were
able to predict the Gaussian vortices forward in time with AAE showing
better results than GAN. To predict unsteady flow fields, Reduced
Order Models (ROMs) have been commonly used with a Recurring
Neural Network (RNN) or a Long Short-Term Memory (LSTM) as the
propagator. Two Hybrid Reduced Order Models (ROMs) were presented
by Bukka et al. [13] to predict unsteady flows. The first model uses
the Proper Orthogonal Decomposition (POD) to project the high fidelity
simulation data to a low dimension. The second model, referred to as
the convolution recurrent autoencoder network (CRAN), employs CNNs
with nonlinear activations, to extract the low-dimensional features.
However, Fotiadis et al. [14] found that CNN-based models have better
performance than RNNs and LSTMs for predicting results for shallow
water problems. Deep learning models with noisy training data can be
used as an alternative to repetitive experiments. Sofos et al. [15] de-
veloped a CNN-based deep learning model for reconstructing turbulent
flow images from low-resolution counterparts encompassing noise.

CNNs suffer from a major drawback, that they can only be trained
efficiently on data from uniform cartesian grids. This makes their
application to most real world flow problems inefficient. For solving
flow problems for complex geometries with irregular boundaries and
unstructured grids, Graph Convolutional Neural Networks (GCNNs) can
be implemented. Chen et al. [16] tested a GCNN as a surrogate model
to predict flow around complex two-dimensional shapes on triangular
unstructured grids. In comparison with U-Nets, the GCNN achieved
better results, but it required more computation resources. For extrap-
olating the time-evolution of the flow in advection and incompressible
fluid dynamics, Lino et al. [17] proposed two GCNN-based model
architectures - multi-scale (MuS)-GNN and rotation-equivariant (RE)
MuS-GNN. On complex flow domains, both models generalized high-
gradient fields from uniform advection fields. The multi-scale approach
provided a better approximation to the Navier–Stokes equations over a
range of Reynolds numbers and design parameters as compared to the
single-scale GCNNs.

The above discussed purely data-driven deep learning models re-
quire significant training data to predict results with good accuracy.
Such large datasets are not always available. An alternative approach
to potentially allow accurate training with sparse measurements is to
integrate physical laws in the loss function of a DNN. In the case of
fluid mechanics, these losses are based on the governing equations
362

and include constraints given by initial and boundary conditions. This
approach has the potential to drastically improve the predictive ca-
pability of the network [6]. Such learning models are referred to as
Physics-Informed Neural Networks (PINNs).

Together with recent developments in automatic differentiation
[18] and the availability of scattered partial spatio-temporal data for
training, PINNs are capable of accurately and efficiently predicting
solutions for fluid mechanics problems [4,19]. Recently, PINNs have
demonstrated their potential compared to conventional CFD methods
with respect to computational efficiency and accuracy in solving certain
PDEs [20–23]. The application of data-driven PINNs to the problems
in fluid mechanics can be distinguished based on the implementation
of constraints for initial/boundary conditions and on the collection of
residuals from different spatial/temporal points in the flow domain.
Using Graphics Processing Units (GPUs) and parallelizing the com-
putation, the application of PINNs can be further expanded to more
computationally demanding problems. For example, near-wall blood
flows using only sparse data [24] or high-speed flows [25] can be
predicted with this approach. Embedding the Navier–Stokes equations
into an ANN allows the extraction of the pressure or velocity fields
from experimental data. Raissi et al. [26] developed a Hidden Fluid Me-
chanics (HFM) model using a Physics-Informed deep learning approach
to extract qualitative data from experimental results. The method is
agnostic to the geometry, and to the initial and boundary conditions.

Based on the complexity of the problem and the desired accuracy
of the solution, hybrid models combining CFD solvers and PINNs have
been developed, e.g., in [27]. Here, the flow solver Mantaflow [28] is
coupled to a Convolutional Neural Network (CNN) for buoyant plume
simulations at different Richardson numbers 𝑅𝑖. Ma et al. [29] imple-
mented the Navier–Stokes equations and the boundary conditions in a
U-Net architecture to predict steady flow fields. It was found that dif-
ferent flow regimes for flow around a cylinder could be learned and the
adhered ‘‘twin-vortices’’ were predicted correctly. To predict solutions
for a steady state natural convection problem for variable and complex
geometries, Peng et al. [30] proposed a Physics-Informed Graph Con-
volution Network (PIGN). The authors also compared the performance
of the PIGN with a purely data-driven GNN model and found that PIGN
had superior performance. The results demonstrated that the excellent
geometric adaptability and prediction capability of a PIGN can be
achieved with only limited training data and once fully trained, the
model could solve natural convection problems with a lower computa-
tion time. Recently, DNNs with domain decomposition also have shown
potential in solving differential equations efficiently [31,32]. Jagtap
et al. [33] proposed a conservative PINN (cPINN) based on the domain
decomposition method for solving forward and inverse problems.

PINNs can also be trained in a data-free manner, i.e., the training
data does not contain any ground-truth data from analytical solutions
or CFD simulations, except for the data from initial or boundary con-
ditions [34]. Grimm et al. [35] implemented the governing physics
in a U-Net using the discretization approaches of a Finite Difference
Method. The authors found that a physics aware data-free model gen-
eralized better than a data-driven model, while predicting steady flow
fields around random geometries for low inlet velocities. However,
Chuang et al. [36] observed that such data-free PINNs can be difficult
to train and lack temporal information, i.e., yielding solely steady state
solutions.

The previously mentioned studies focus solely on the capability of
predicting flow fields with deep learning methods, without consider-
ing the sparsity of data for different flow applications. Investigating
the training data-dependency of deep learning models can be useful
for real world problems, where large training datasets are not avail-
able. For example, the development of a car body in the automobile
industry is usually supported by CFD simulations and wind tunnel
experiments [37,38]. However, although these techniques are capable
of correctly predicting force coefficients or regions of flow separa-
tion [39], they are limited in terms of reproducing real conditions like

weather, driving style, or the roughness of a road’s surface.

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

𝑢

In contrast to wind tunnel experiments, collecting on-road data
enables to reveal more complex flow structures related to such real con-
ditions, e.g., increased flow unsteadiness in the region of the A-pillar
vortex implying noise generation [40] can be analyzed for varying
on-road conditions. Real-time surface sensors could capture the perfor-
mance of a driving prototype vehicle [41], and DNNs could be trained
with these measurements to predict the surrounding flow fields. Such
surface sensors can only be installed sparsely and hence their number
and strategic placement is of great importance. Furthermore, the inte-
gration of the governing physics with loss constraints could be essential
for improving such predictions. Notably, the calculation of additional
physical losses in PINNs may result in higher computational demands.
Depending on the complexity of the flow problem, the application of
PINNs may not be justified over employing in general cheaper-to-train
DNNs that may provide similarly accurate and physically plausible
solutions.

In this regard, the number and placement of the following types of
data sources are discussed in this investigation:

(i) domain points with a corresponding ground truth (data-driven)
and

(ii) domain points without ground truth (data-free).

The study assesses the performance of PINNs and conventional
DNNs with respect to variations in the number of the these types of
data sources. The goal is to demonstrate and quantify the amount
and location of training data that justifies the use of PINNs over
conventional DNNs in terms of prediction accuracy for different flow
configurations. For this purpose, the following flow configurations are
considered.

• Potential flow,
• a boundary layer flow based on the Blasius equation, and
• a Taylor–Green Vortex.

The ground truth data for the different flow configurations in this study
are obtained using analytical and numerical methods. The ground truth
is also used to validate the ANN-predicted flow fields. Throughout the
manuscript, the ANN nomenclature refers to both PINNs and DNNs.

Given that the objective of this study is to analyze the effect of phys-
ical constraints, training data concentration in the spatial domain, and
noisy training data for individual flow scenarios, solely fully-connected
feed forward neural network architectures are used to compare the
performance of PINNs with that of DNNs. The findings are expected
to contribute to a more efficient use of PINNs in fluid dynamics and
potentially extend its application to real-world flow problems such as
in vehicle aerodynamics.

The manuscript is structured as follows. In Section 2, the flow
configurations are described and details about the training and test data
are provided. The DNNs and PINNs are introduced. Subsequently, the
network-predicted flow fields are compared to the analytic solutions in
Section 3. Finally, the findings are summarized, conclusions are drawn,
and an outlook is given in Section 4.

2. Methods

In this section, the theoretical background of the computations are
described. Section 2.1 provides information about the flow configura-
tions considered in this work. This includes the governing equations
as well as the boundary and initial conditions used for solving the
equations. In Section 2.2, the architecture, parameters, and basic loss
functions of the DNNs are described, and the physical loss functions
that extend the DNNs to PINNs are explained.
363
Fig. 1. Streamlines of potential flow around a cylinder (top) and Rankine oval
(bottom), colored by the normalized velocity magnitude 𝑢𝑚𝑎𝑔∕𝑈 .

2.1. Flow configurations

The governing equations, spatial domains, and boundary conditions
of the two-dimensional flow problems investigated in this study are
described in what follows.

Potential flow
A potential flow is defined as a steady, incompressible, inviscid,

and irrotational flow around a body. The velocity field 𝑢 = (𝑢, 𝑣)𝑇

is described by the gradient of a scalar function called the potential
function 𝜙, given by

⃗ = ∇𝜙. (1)

Here, 𝑢 represents the velocity component in the 𝑥-direction, and 𝑣
in the 𝑦-direction. The orientation of the directions are illustrated in
Fig. 1. The condition for irrotational flow, i.e., 𝛁× 𝑢 = 0, is satisfied by
𝛁 ×∇𝜙 = 0. The continuity equation for incompressible flows ∇ ⋅ 𝑢 = 0
yields the first governing equation for potential flows, given by

∇ ⋅ ∇𝜙 = 𝛥𝜙 = 0. (2)

Further governing equations based on the stream function 𝜓 are

𝑢 =
𝜕𝜓
𝜕𝑦
, 𝑣 = −

𝜕𝜓
𝜕𝑥
. (3)

These equations fulfill the continuity equation and the condition for
irrotational flows yields the second governing equation for potential
flows, i.e.,

𝛥𝜓 = 0. (4)

Fig. 1 shows the two potential flow configurations investigated in this
study, i.e., the potential flow around a circular cylinder with diameter
𝐷 and around a Rankine oval. Both domains are characterized by a
uniform inflow with velocity 𝑢(𝑥 = 0) = (𝑈, 0)𝑇 , a source, and a sink.
The length of the fluid domain in case of the circular cylinder is 4𝐷 and
2𝐷 in the 𝑥- and 𝑦-directions, and the source and sink have the same
center. In case of the Rankine oval, they are separated by a distance
of 2𝑎. Here, the length of the fluid domain is 8𝑎 and 5𝑎 in the 𝑥- and
𝑦-directions. The velocity fields in Fig. 1 show the velocity magnitude
𝑢𝑚𝑎𝑔 , normalized by 𝑈 . The potential and stream functions read

𝜙 =𝑈𝑥 + 𝑄
⋅

𝑥 , (5)

𝜋 𝑥2 + 𝑦2

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

𝜌

w
a

a
B
O
s
d
i
f

𝜂

T
𝜇
𝑦

T
s

I
a

w
o

b
t

𝑓

I

T

f
e
e
o
i
b

𝑤

w
d

𝐴

T
a

t

𝑣

w
t
t

2

e
f
s
g
a
a
w
a
g

𝜓 =𝑈𝑦 − 𝑄
𝜋

⋅
𝑦

𝑥2 + 𝑦2
(6)

for the circular cylinder, and

𝜙 =𝑈𝑥 + 𝑚
4𝜋

⋅ log
[

(𝑥 + 𝑎)2 + 𝑦2

(𝑥 − 𝑎)2 + 𝑦2

]

, (7)

𝜓 =𝑈𝑦 − 𝑚
2𝜋

⋅ tan−1
(

2𝑎𝑦
𝑥2 + 𝑦2 − 𝑎2

)

(8)

for the Rankine oval. The strength of the source and sink are given by
𝑄 = 𝜋(𝐷∕2)2𝑈 for the cylinder, and 𝑚 for the Rankine oval.

To calculate the flow field, the fluid domain is discretized using a
structured grid with cell spacing 𝛥𝑝𝑜𝑡,𝑐 = 𝐷∕80 for the circular cylinder
and 𝛥𝑝𝑜𝑡,𝑅 = 𝑎∕100 for the Rankine oval.

Blasius boundary layer flow
The boundary layer equations for a flat plate of length 𝐿𝑏 are

derived from the Navier–Stokes equations by using Prandtl’s bound-
ary layer approximation [42]. The important assumptions are a high
Reynolds number 𝑅𝑒 ≫ 1 and attached flow, i.e., there is no flow
separation. The effects of viscosity are only limited to a thin layer
of width 𝛿 near the surface of the body, which is oriented normal to
the plate. Considering a zero pressure gradient, the boundary layer
equations are given by
𝜕𝜌𝑢
𝜕𝑥

+
𝜕𝜌𝑣
𝜕𝑦

=0, (9)

𝑢 𝜕𝑢
𝜕𝑥

+ 𝜌𝑣 𝜕𝑢
𝜕𝑦

= 𝜕
𝜕𝑦

(

𝜇 𝜕𝑢
𝜕𝑦

)

(10)

𝜕𝑝
𝜕𝑥

= 0,
𝜕𝑝
𝜕𝑦

=0, (11)

here 𝜌 is the density of the fluid and 𝜇 is the dynamic viscosity, with 𝑥
nd 𝑦 being oriented parallel and orthogonal to the plate respectively.

In the scope of this study, the velocity field of the flat plate bound-
ry layer equations is predicted using ANNs. The basic criteria for
lasius’ solution was to transform the above system of PDEs to a single
DE by using coordinate transformation [43]. To find a self-similar

olution, where the solution should not change if an independent and
ependent variable are scaled appropriately, the dependent variable 𝑓
s defined. The quantity 𝑓 is related to the stream function 𝜓 and a
unction of the independent variable 𝜂.

Based on the boundary layer thickness 𝛿(𝑥), 𝜂 is defined as:

∼
𝑦
𝛿(𝑥)

=
𝑦

(𝜈𝑥∕𝑈0)1∕2
. (12)

his is known as the scaled form of the stream function, where 𝜈 =
∕𝜌 is the kinematic viscosity. The velocity components in the 𝑥- and
-directions are scaled by 𝑈0 by

�̃� = 𝑢
𝑈0
, �̃� = 𝑣

(𝜈𝑈0∕𝑥)1∕2
. (13)

From the above equations, a scaled stream function is obtained by

𝑓 (𝜂) =
𝜓

(𝜈𝑥𝑈0)1∕2
. (14)

he velocity components can now be expressed in terms of the scaled
tream function as

𝑢 =𝑈0
𝑑𝑓
𝑑𝜂

, (15)

𝑣 =1
2

√

𝜈𝑈0
𝑥

(

𝜂
𝑑𝑓
𝑑𝜂

− 𝑓
)

. (16)

nserting these values in the governing Eqs. (9), (10), and (11), and
fter some simplifications, the following ODE is obtained

𝑑3𝑓
𝑑𝜂3

+ 1
2
𝑓
𝑑2𝑓
𝑑𝜂2

= 0, (17)

hich is the final form of the Blasius boundary layer equation for flows
ver a flat plate. At the wall, no-slip boundary conditions are prescribed
364
y setting 𝑢(𝑦 = 0) = 𝑣(𝑦 = 0) = 0, and at 𝑦 ≥ 𝛿, the velocity becomes
he free stream velocity,

𝑓 (𝜂 = 0) = 0, (18)

𝑓 ′(𝜂 = 0) = 0, (19)
′(𝜂 → ∞) = 1. (20)

n this equation, 𝑓 ′ = 𝑑𝑓∕𝑑𝜂.

aylor–Green Vortex
The Taylor–Green vortex is an unsteady flow of a decaying vortex,

or which a complete solution of the incompressible Navier–Stokes
quations will suffice to illustrate the process of dissipation of large
ddies into smaller ones. An attempt was made by Taylor et al. [44] to
btain a solution for the subsequent motion of the viscous incompress-
ble fluid, when the initial solution in Cartesian coordinates is given
y

𝑢 =𝐴(cos 𝑎𝑥)(sin 𝑏𝑦)(sin 𝑐𝑧), (21)

𝑣 =𝐵(sin 𝑎𝑥)(cos 𝑏𝑦)(sin 𝑐𝑧), (22)

=𝐶(sin 𝑎𝑥)(sin 𝑏𝑦)(cos 𝑐𝑧), (23)

here 𝑤 is the velocity component in the 𝑧-direction. The equations
escribed above are consistent if

𝑎 + 𝐵𝑏 + 𝐶𝑐 = 0. (24)

he governing equations for a two-dimensional Taylor–Green vortex
re given by

∇ ⋅ 𝑢 =0, (25)
𝜕𝑢
𝜕𝑡

+ 𝑢 ⋅ ∇𝑢 =1
𝜌
∇ ⋅ ̄̄𝜎, (26)

where Eq. (25) is the continuity equation and Eq. (26) defines the
Cauchy momentum equation. Here, the quantity ̄̄𝜎 is the viscous stress
tensor for incompressible flow given by

̄̄𝜎 = −𝑝 ̄̄𝐼 + 𝜇(∇𝑢 + (∇𝑢)𝑇), (27)

where 𝑝 stands for the pressure and ̄̄𝐼 for the identity tensor. According
to Taylor’s analysis and for the condition:

𝐴 = 𝑎 = 𝑏 = 1, (28)

he analytical solution for a two-dimensional vortex is given by

𝑢 = cos 𝑥 sin 𝑦𝐹 (𝑡), (29)

= − sin 𝑥 cos 𝑦𝐹 (𝑡), (30)

𝑝 = −
𝜌
4
(cos 2𝑥 + sin 2𝑦)𝐹 2(𝑡), (31)

here 𝐹 (𝑡) = 𝑒−2𝜈𝑡 and 𝑡 represents the time. Fig. 2 gives an example of
he analytical initial solution. The analytical solutions from Eqs. (29)
o (31) are used for generating training data.

.2. Architecture of the ANNs

A fully-connected feed forward network architecture is used for
very problem in this work and the hyperbolic tangent (tanh) activation
unction [45] is used for the hidden and output layers. The random
earch method is used for hyperparameter tuning. Fig. 3 provides a
eneral example of network architectures and loss functions for DNNs
nd PINNs. The neurons of the input layer and the output neurons
re colored in red and blue. The DNN has only one loss function 𝐿𝐼 ,
hich is the Mean-Squared Error (MSE) between the DNN predictions
nd the ground truth. In the PINN case, further losses 𝐿𝐼𝐼 for the
overning equations are also included. For 𝐿𝐼𝐼 , the differentials with

respect to the input variables, as shown by the yellow circles in Fig. 3,
are calculated using the automatic differentiation functionalities of

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.
Fig. 2. 2D Taylor–Green Vortex at 𝑡 = 0.

Fig. 3. Architecture of a generic DNN and PINN.

Table 1
Input and output of the ANNs for each flow configuration.

Flowcase Input Output

Potential flow 𝑥, 𝑦 𝑢, 𝑣
Blasius equation 𝜂 𝑓 , 𝑓 ′

Taylor–Green Vortex 𝑥, 𝑦, 𝑡 𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦,
𝑢, 𝑣, 𝑝

PyTorch.1 That is, autograd methods like grad and jacobian are
used in the loss functions for residuals of the governing equations.

The flow-specific inputs and outputs are shown in Table 1. For the
two potential flow cases, the inputs are the Cartesian coordinates (𝑥, 𝑦).
The outputs are the 2D velocity field in the 𝑥- and 𝑦-directions. The
input for the Blasius boundary layer flow is the independent variable
𝜂 given by Eq. (12), instead of the 2D Cartesian coordinates that are
used in the other cases. The reason for this is the fact that the scaled
stream function 𝑓 depends only on 𝜂, cf. Section 2.1. The output of the
network is the scaled stream function and its first derivative. To obtain
a predicted velocity field, the output values are derived from Eq. (13).
For the unsteady flow case of the two-dimensional Taylor–Green vortex,
time 𝑡 along with the Cartesian coordinates are the inputs to the ANN.
The outputs are defined by the velocity and pressure fields as well as
by the components of the viscous stress tensor ̄̄𝜎.

Each data point defines an input–output pair and solutions are
generated for 𝑁𝑡𝑜𝑡𝑎𝑙 data points. The losses 𝐿𝐼 and 𝐿𝐼𝐼 depend on the
types of data points of each flow configuration. All data points are a
subset of 𝑁𝑡𝑜𝑡𝑎𝑙, which is defined for each problem. Fig. 4 provides

1 Torch version 2.0.1+cu117.
365
Fig. 4. Distribution of data points for a general example of a two-dimensional flow
around an arbitrary shape. The boundary and wall points 𝑁𝑏 and 𝑁𝑤 are shown with
black and blue dots, and the domain points 𝑁𝑑 with yellow dots. All these points are
kept fixed for each training run. The variable data points with existing ground truth
data, 𝑁𝑑,1 ⊆ 𝑁𝑑 are denoted by the red dots.

a general example of the different types of data points for a two-
dimensional flow around an arbitrary shape. Points extracted from
domain boundaries 𝑁𝑏 are expressed by black dots. If there is flow
around an object, e.g., the blue obstacle in Fig. 4, the losses include
wall points 𝑁𝑤, which are represented by the blue dots at the shape’s
contour. The yellow data points in the flow domain away from the
boundaries are denoted as 𝑁𝑑 . The domain points 𝑁𝑑 together with
𝑁𝑏 and 𝑁𝑤 (if there is an object) are used to calculate the residual
loss. They are kept fixed for each training run. A subset of 𝑁𝑑 , i.e., 𝑁𝑑,1,
represented by the red dots in Fig. 4, and its corresponding ground truth
data from analytical solutions is varied for each training run. These
variations are defined by the fraction  , defined by

 =
𝑁𝑑,1

𝑁𝑑
. (32)

For the potential flow problems, the residual loss from the governing
equations is embedded into the total loss for all boundary subdomains
and for a set of random points in the fluid domain. The physical loss
function used for training the potential flow PINNs is defined by

𝐿𝐼𝐼,𝑝𝑜𝑡 =
1

𝑁𝑝𝑜𝑡

⎡

⎢

⎢

⎣

𝑁𝑝𝑜𝑡
∑

𝑛=1
∣ ∇ ⋅ 𝑢𝑛 ∣2 +

𝑁𝑝𝑜𝑡
∑

𝑛=𝑖
∣ ∇ × 𝑢𝑛 ∣2

⎤

⎥

⎥

⎦

, (33)

where 𝑁𝑝𝑜𝑡 = 𝑁𝑏 + 𝑁𝑤 + 𝑁𝑑 . The prediction loss against the exact
solution is given as

𝐿𝐼,𝑝𝑜𝑡 =
1

𝑁𝑝𝑜𝑡,1

𝑁𝑝𝑜𝑡,1
∑

𝑛=1

|

|

𝑢𝑛 − 𝑢∗𝑛||
2 , (34)

where 𝑁𝑝𝑜𝑡,1 = 𝑁𝑏 +𝑁𝑤 +𝑁𝑑,1. Here, for each point n, 𝑢∗𝑛 is the exact
velocity vector and 𝑢𝑛 is the predicted velocity vector.

For the Blasius boundary layer flow, the physical loss of Eq. (17) is
defined by

𝐿𝐼𝐼,𝑏𝑙 =
1
𝑁𝑏𝑙

𝑁𝑏𝑙
∑

𝑛=𝑖

|

|

|

|

𝑓 ′′′
𝑛 + 1

2
𝑓𝑛𝑓

′′
𝑛
|

|

|

|

2
, (35)

with the total number of data points 𝑁𝑏𝑙 = 𝑁𝑏 + 𝑁𝑑 , where 𝑁𝑑
represents 𝜂 away from the boundaries, and 𝑁𝑏 represents 𝜂 at the
boundaries. The quantity 𝑁𝑏𝑙 is kept fixed for each training run. The
prediction loss for the Blasius flow problem is given by

𝐿𝐼,𝑏𝑙 =
1

𝑁𝑏𝑙,1

𝑁𝑏𝑙,1
∑

𝑛=𝑖
∣ 𝑓𝑛 − 𝑓 ∗

𝑛 ∣2, (36)

where 𝑓 ∗
𝑛 is the exact value of the scaled stream function from the

numerical solution and 𝑁𝑏𝑙,1 = 𝑁𝑏 +𝑁𝑑,1.
In case of the two-dimensional Taylor–Green vortex, Sequence-to-

Sequence (S2S) training is implemented. The schematic for the S2S
training is shown in Fig. 5, which is based on the backward-compatible

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.
Fig. 5. Sequence to Sequence (S2S) training for unsteady flow problems.

sequence training model implemented by Mattey et al. [46] for time-
dependent PDEs. The training data is calculated for specific time-steps
defined by the time step size 𝛥𝑡. The size of the spatial domain for all
time steps is the same. Starting from 𝑡 = 0, the ANN is sequentially
trained for each time step, and training is restarted when a stopping
criteria is met. The stopping criteria is defined by either the maximum
number of epochs or a specified training loss value. This process is
continued until the final time step 𝑡 = 𝑇 is reached, where the physical
loss in training is augmented by the prediction loss from all time steps
between 𝑡 = 0 and 𝑡 = 𝑇𝑁−1. The physical loss for a certain time step,
𝑡 = 𝑡𝑖 is

𝐿𝐼𝐼,𝑡𝑔𝑣 =
1

𝑁𝑡𝑔𝑣

⎡

⎢

⎢

⎣

𝑛=𝑁𝑡𝑔𝑣
∑

𝑛=1

|

|

∇ ⋅ 𝑢𝑛||
2 + (37)

𝑛=𝑁𝑡𝑔𝑣
∑

𝑛=1

|

|

|

|

|

𝜕𝑢𝑛
𝜕𝑡

+ 𝑢𝑛 ⋅ ∇𝑢𝑛 −
1
𝜌
∇ ⋅ ̄̄𝜎𝑛

|

|

|

|

|

2

+

𝑛=𝑁𝑡𝑔𝑣
∑

𝑛=1

|

|

|

̄̄𝜎𝑛 + 𝑝𝑛 ̄̄𝐼 − 𝜇(∇𝑢𝑛 + (∇𝑢𝑛)𝑇)
|

|

|

2⎤
⎥

⎥

⎦

, (38)

where 𝑁𝑡𝑔𝑣 = 𝑁𝑏 + 𝑁𝑑 defines the spatial data points. The prediction
loss for the data-driven training is given by

𝐿𝐼,𝑡𝑔𝑣 = 𝐿𝑡𝑔𝑣,𝑢 + 𝐿𝑡𝑔𝑣,𝑝 + 𝐿𝑡𝑔𝑣,𝑢′ + 𝐿𝑡𝑔𝑣,𝑝′ (39)

with

𝐿𝑡𝑔𝑣,𝑢 =
1

𝑁𝑡𝑔𝑣,1

𝑛=𝑁𝑡𝑔𝑣,1
∑

𝑛=1
∣ 𝑢𝑛 − (𝑢𝑛)∗ ∣2, (40)

𝐿𝑡𝑔𝑣,𝑝 =
1

𝑁𝑡𝑔𝑣,1

𝑛=𝑁𝑡𝑔𝑣,1
∑

𝑛=1
∣ 𝑝𝑛 − 𝑝∗𝑛 ∣

2, (41)

𝐿𝑡𝑔𝑣,𝑢𝑡 =
1

𝑁𝑡𝑔𝑣,2

𝑛=𝑁𝑡𝑔𝑣,2
∑

𝑛=1
∣ 𝑢𝑡𝑛 − (𝑢𝑡𝑛)

∗ ∣2, (42)

𝐿𝑡𝑔𝑣,𝑝𝑡 =
1

𝑁𝑡𝑔𝑣,2

𝑛=𝑁𝑡𝑔𝑣,2
∑

𝑛=1
∣ 𝑝𝑡𝑛 − (𝑝𝑡𝑛)

∗ ∣2, (43)

where 𝑁𝑡𝑔𝑣,1 = 𝑁𝑏+𝑁𝑑,1 defines the data points in space at 𝑡𝑖. Similarly,
𝑁𝑡𝑔𝑣,2 are the training points from previously trained time steps. For
each training point in the prediction loss, the superscript (∗) defines
366
the exact solution and the superscript (𝑡) defines the solution from the
previous time steps.

Weights and biases of the models are updated by an Adaptive
Moment Estimation (ADAM) [47] or Stochastic Gradient Decent (SGD)
optimizer [48]. For all investigated flow cases, both, the input to the
ANN and the ground truth, are used without any normalization.

3. Results

In this section, the computation cost is analyzed using the training
time of PINNs and DNNs. Additionally, the performance of PINNs and
DNNs is analyzed in terms of their prediction accuracy for variations
of  . The qualitative results for each case are shown for certain
selected values of  . The basis for this selection is the difference in
the performance of PINNs and DNNs for each problem at the training
data points defined by  . While training the PINNs, 50% of the domain
points are used for the physical loss, which is kept constant along with
the boundary points. The location for these points remains unchanged
while training the multiple cases. For all cases, a 80 ∶ 20% data split
is used to distribute between training and testing datasets. Hyperpa-
rameter tuning is performed for the PINN models and the selected
hyperparameters are also used for the respective DNN models.

The models are trained on the GPU partition of the JURECA-
DC cluster [49] installed at the Jülich Supercomputing Centre (JSC),
Forschungszentrum Jülich. Each node is equipped with four NVIDIA
A100 GPUs and two AMD EPYC 7742 CPUs with 64 cores clocked at
2.25 GHz. The results presented in the following are for deterministic
training with the same parameters for both the PINN and DNN. Ad-
ditionally, these results are verified by randomly initializing the PINN
and DNN individually and checking their performance.

The model performance is evaluated using the prediction accuracy
for the complete flow field. Errors are quantified by juxtaposing the re-
sults of the ANNs to the exact solutions, which are obtained analytically
or numerically. The parameter chosen for evaluating the prediction
accuracy is calculated as a relative Euclidean norm (𝐿2) error given
by

𝜖𝜙 =

√

∑

𝑥,𝑦,𝜂 ∣ 𝜙(𝑥, 𝑦, 𝜂) − 𝜙𝑒(𝑥, 𝑦, 𝜂) ∣2
√

∑

𝑥,𝑦,𝜂 ∣ 𝜙𝑒(𝑥, 𝑦, 𝜂) ∣2
. (44)

Here, 𝜙 = 𝑢, 𝑣, 𝑝, 𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦, 𝑓 , 𝑓 ′, and 𝜙𝑒 is the exact value of the
corresponding output variable. Both 𝜙 and 𝜙𝑒 are calculated for 𝑁𝑡𝑜𝑡𝑎𝑙
grid points for every flow case. The performance of the NNs during the
training is evaluated with the 𝐿2 error for the testing dataset and the
prediction error of a trained model is calculated as the 𝐿2 error for the
complete flow domain.

3.1. Potential flow: Cylinder

A two-dimensional uniform grid is generated using the meshgrid
function in the NumPy2 module of Python. The cell size is set to
0.0125𝐷. The grid has 𝑁𝑡𝑜𝑡𝑎𝑙 = 46,600 data points of which 𝑁𝑏 = 964
are located at the domain boundary and 𝑁𝑤 = 235 are located on
the cylinder wall. The rest of the data points are uniformly distributed
within the flow domain. The domain points that have corresponding
ground-truth data are varied from  = 0.05 to  = 0.8. Both PINNs
and DNNs are trained with 6 hidden layers and each hidden layer
has 60 neurons. The ADAM optimizer is used with a learning rate of
𝐿𝑅 = 0.0005. The models are trained on a single GPU for 20,000 epochs.

As shown in Fig. 6, a computational cost analysis between the PINNs
and DNNs for different values of  is performed using the 𝐿2 error
curve from the testing data against training time required to train
20,000 epochs. The training time required for PINN is six times more

2 NumPy version 1.25.2.

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

t
s
D

c
I
t
t

u
a
o
o
d
d
l
p
6
u
2

D
i
5

t

i

h
i
g
h
t


b

Fig. 6. 𝐿2 testing error versus training time for potential flow around a cylinder.

Fig. 7. 𝐿2 prediction error for a varying  for the potential flow around a cylinder.

Fig. 8. Error density of the predicted velocity field for a potential flow around a
cylinder with  = 0.05 (top) and  = 0.2 (bottom).

han that of the DNN. The progression of the training error shows
imilar trends for the two tested values of  for PINN as well as for
NN. At 20,000 epochs, both DNNs have a similar 𝐿2 testing error

in comparison to the respective PINNs, but the following qualitative
analysis highlights the higher accuracy of the PINN. The change in the
prediction error with variation in  is shown in Fig. 7. For all  , the
PINN performs better than the DNN.

The absolute error density in prediction of the velocity field for
both models is shown for  = 0.05 in Fig. 8 (top), and for  = 0.2
367

a

Fig. 9. 𝐿2 testing error versus training time for potential flow around a Rankine oval.

in Fig. 8 (bottom). Comparing the results of Fig. 8 (top), it can be
deduced that for an equal number of training epochs and the same
hyperparameters, the DNN fails to accurately predict both 𝑥- and 𝑦-
omponents of the velocity field in the vicinity of the cylinder wall.
n contrast, the PINN-based predictions show improved predictions for
he overall flow fields. When the number of training data with ground
ruth is increased from  = 0.05 to  = 0.2, both ANNs predict the

flow around the cylinder better, as it is visible in Fig. 8 (bottom).
However, this improvement is reflected differently for the PINN and
DNN. The DNN, missing associated physics in the loss function, cannot
accurately predict the velocity field near the cylinder wall, whereas the
PINN outputs show a higher accuracy. These results underline the clear
superiority of data-driven PINN models for predicting the potential
flow around a cylinder. However, the gain in prediction accuracy with
the PINN is achieved with a comparatively higher training time. For
instance, with  = 0.05, the prediction error of the PINN is almost half
to that of the DNN, but the PINN has a six times longer training time.

3.2. Potential flow: Rankine oval

To resolve the Rankine oval flow, a total number of 𝑁𝑡𝑜𝑡𝑎𝑙 = 332,616
niformly distributed spatial data points are used, of which 𝑁𝑏 = 2600
re on the boundaries of the domain and 𝑁𝑤 = 1592 are on the Rankine
val boundary. Similar to the previous case, the training data points
n the boundary are kept fixed. The included ground truth for the
ata-driven training is varied with  as a percentage of the domain
ata points used for the physical loss. Eqs. (33) and (34) define the
oss functions for the training models with and without integrated
hysics. Both models have 5 hidden layers and each hidden layer has
0 neurons. The ADAM optimizer with a learning rate 𝐿𝑅 = 0.0005 is
sed for all training runs. All models are trained on a single GPU for
0,000 epochs.

It can be observed from the 𝐿2 testing error plot in Fig. 9 that the
NN is able to achieve a similar performance as the PINN. An increase

n the training data from  = 0.05 to  = 0.2 results in an increase of
s and 1 s in training time of the PINN and DNN respectively. For both
values, the training time of the PINN is almost nine times larger than

he training time of the DNN.
The change in the prediction error under variation of  is shown

n Fig. 10. Predictions from PINNs provide a higher accuracy up to
= 0.38 compared to DNNs, while the latter performs slightly better for

igher values of  . However, the 𝐿2 error for both Rankine models first
ncreases with  and then drops until  = 0.4 is reached. The largest
ap between the two types of ANNs is observed for  = 0.1. Given the
igher number of 𝑁𝑡𝑜𝑡𝑎𝑙 data points, both models already have more
raining data available than the cylinder case for each  value.

The density plots for the absolute prediction error are shown for
= 0.05 and  = 0.2 in Fig. 11 (top) and (bottom). For  = 0.05,

oth models are able to predict the velocity fields with a reasonable
ccuracy, although the PINN shows qualitatively better results than the

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

R

D
m
o
F

s
t
o
e

b

b

t
t
s
g
f
w
P
i
𝜂
p
W
v
b
a
w
i
h
l
t
h
e

3

g
i
t
s
h

Fig. 10. 𝐿2 prediction error for a varying  for the potential flow around a Rankine
oval.

Fig. 11. Error density of the predicted velocity field for a potential flow around a
ankine oval using  = 0.05 (top) and  = 0.2 (bottom) for the training.

NN. In comparison to the cylinder case, the 𝐿2 error of the DNN is
uch lower for  = 0.05, which can be attributed to a larger number

f training data points for the Rankine oval compared to the cylinder.
or  = 0.2, the DNN struggles to predict the 𝑥-velocity components

near the stagnation point and downstream of the oval. Once again,
PINNs show a higher prediction accuracy for potential flow with lower
 values and can be used to predict the flow around a Rankine oval
when minimal ground truth data is available.

3.3. Blasius boundary layer flow

For the Blasius boundary layer flow case, hyperparameter tuning
yields best results when using the SGD optimizer with a learning rate
of 𝐿𝑅 = 0.002, 6 hidden layers and 60 neurons per hidden layer. The
loss to be minimized is calculated using Eqs. (35) and (36). As ground
truth, 𝑁𝑡𝑜𝑡𝑎𝑙 = 10,000 data points are extracted from the numerical
olution and are randomly distributed for data-driven training, keeping
he boundary points fixed for each training run. Both models are trained
n a single GPU for 20,000 epochs and the epochs are kept constant for
ach training run.

The 𝐿2 testing error progressions against compute time required by
oth PINNs and DNNs are shown in Fig. 12. For both  = 0.2 and  =

0.4, the training times of PINNs are almost ten times higher than DNNs.
368

v

Fig. 12. 𝐿2 testing error vs. training time for the Blasius boundary layer flow.

Fig. 13. 𝐿2 prediction error for a varying  value for the Blasius boundary layer flow
case.

Fig. 13 shows, that except for  = 0.4, the PINN-based predictions have
a lower 𝐿2 error compared to the DNN-based predictions. At  = 0.4,
oth types of ANN have a similar accuracy with an 𝐿2 error of 7.0×10−4.

Fig. 14 (left) show the predicted velocity profiles obtained from
he models with  = 0.2, and Fig. 14 (right) for  = 0.4. When
rained with  = 0.2, both models predict the velocity profile of the
treamwise component (𝑢∕𝑈0) well with minimal deviation from the
round truth between 𝜂 = 5.0 and 𝜂 = 8.0. Predictions of both models
or the normal velocity component (𝑣

√

𝑥∕(𝜈𝑈0)) are in good agreement
ith the ground truth away from the wall. However, near the wall, the
INN has a better prediction than the DNN, which can be observed
n the zoomed inset in Fig. 14 (left down). In the region between
= 5.0 and 𝜂 = 10.0, which correspond to the free stream conditions,

redictions from both models show deviation from the ground truth.
hile considering the predictions with  = 0.4, both models predict the

elocity profiles in good agreement with the ground truth both in the
oundary layer and free stream regions. In this case, the PINN provides
gain a better prediction of the normal velocity component near the
all, as can be seen in Fig. 14 (right down). It can be concluded that

ncluding a sufficient amount of ground truth data in the training can
elp in accurately predicting the velocity profiles for the boundary
ayer flow problem simplified by Blasisus. However, it has to be noted
hat this is achieved with a higher computation cost for PINN, and
ence this gain in accuracy has to be justified for higher computational
fforts.

.4. 2D Taylor–Green vortex

The spatial grid for the two-dimensional Taylor–Green vortex is
enerated using the meshgrid function in NumPy. The grid spacing
s uniform with a cell size of 0.02, and (𝑥, 𝑦) ∈ [−𝜋, 𝜋]. Data for
raining is extracted from the complete spatio-temporal grid for six time
napshots with a temporal step size of 5 s, where each time snapshot
as the same spatial grid. This time step size is selected such that the

elocity and pressure fields have varied enough to train the ANNs on

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

b

t
p

t
t
a
1

s
o
e
f
e
f

t

Fig. 14. Comparison of predictions of velocity profiles in the Blasius boundary layer
y a PINN and a DNN against the exact solution with  = 0.2 (left) and  = 0.4 (right).

he temporal range. For each time step, a total of 𝑁𝑡𝑜𝑡𝑎𝑙 = 99,860 spatial
oints are generated of which 1264 points are located at the domain

boundary. Again, the number and location of the boundary points are
kept constant for the training of all models.

The percentage of the domain data points with an exact solution
is varied during the training of PINNs and DNNs. When using the
S2S method, the number of training data points in the spatial domain
for each time step is kept constant and the domain data points are
randomly chosen. The PINN and DNN models are trained for a time
range of [0,… , 30] s. The SGD optimizer with a learning rate of 𝐿𝑅 =
0.003 is used for training the PINNs and DNNs, and each hidden layer
has 300 neurons. The stopping criteria for training of each time step
is set to 30,000 epochs. Models on a coarse grid with a cell size of
0.05 and 𝑁𝑡𝑜𝑡𝑎𝑙 = 16,000 points are also trained for each time step. The
raining for each time step is run for 20,000 epochs. The objective is
o investigate the model performance under different grid sizes. These
re referred as reduced models in this text. All models are trained on
0 nodes, using in total 40 GPUs.

To compare the training time of PINNs and DNNs, the 𝐿2 testing
error progressions are plotted in Fig. 15 for  = 0.05. Each peak
ignifies the start of sequence training for the next time step. As
bserved, the DNN achieves a relatively lower training error at the
nd of the second sequence, but the error does not decrease further in
ollowing training sequences. Although the PINN has a higher training
rror for the second sequence, the error decreases consistently in the
ollowing sequences.

The advantage of S2S training for PINNs is reflected in the predic-
369

ion accuracy of temporal interpolation. The 𝐿2 error for different 
Fig. 15. 𝐿2 testing error vs. training time for the 2D Taylor–Green vortex with a grid
cell size of 0.02.

Fig. 16. 𝐿2 prediction error for a varying  for the 2D-Taylor–Green vortex at 𝑡 = 17.

Table 2
𝐿2 error in the output variables of the two-dimensional Taylor–Green Vortex for 𝑡 = 17 s
using  = 0.05. Reduced models are trained on a dataset with 𝑁𝑡𝑜𝑡𝑎𝑙 = 16,000 spatial
grid points.

Variable 𝑃𝐼𝑁𝑁 𝐷𝑁𝑁 𝑃𝐼𝑁𝑁𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝐷𝑁𝑁𝑟𝑒𝑑𝑢𝑐𝑒𝑑

u 0.0175 0.0084 0.054 0.0539
v 0.0078 0.0104 0.057 0.0576
p 0.0267 0.1239 0.0944 0.1264

values are plotted for 𝑡 = 17 s in Fig. 16 for both fine and coarse grids.
Note that flow fields from 𝑡 = 17 s did not belong to the training data.
There is no intersection point found for the training setups. The PINN
models consistently show better performance than the DNN models for
all variations in  . For the reduced models, the lowest prediction error
of 6.9× 10−2 is achieved by the PINN using  = 0.8. In case of the finer
mesh, the PINN achieves the lowest 𝐿2 error of 9.8×10−3 at  = 0.8. For
increasing  values, PINNs have a consistently improving performance,
whereas DNN-based predictions are characterized by a fluctuating 𝐿2
error, similar to the potential flow cases. That is, the inclusion of
governing physics and increased ground truth data in training can
improve ANN predictions for a two-dimensional Taylor–Green vortex
trained using the S2S method.

The 𝐿2 errors for the different models are summarized for  = 0.05
and 𝑡 = 17 s in Table 2. It can be observed that models trained on a
coarse grid have higher 𝐿2 errors.

A qualitative comparison of predicted variables with the exact solu-
tion at 𝑡 = 17 s is shown in Fig. 17 for the models trained on a finer grid.
The large blank regions in the pressure field of the DNN predictions
highlight the model’s inability to predict fields with different min–
max ranges when no physical loss is used in the training. The velocity
fields are predicted well by both models. A similar comparison is
shown for the reduced models in Fig. 18 and a similar trend for the
predictions of the pressure field is observed. Given the unsteady nature
of this problem, all models are trained in time with S2S learning,
see Section 2. The results shown in Figs. 17 and 18 highlight the
interpolation capability of the S2S-trained models. Despite having no

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

t
p

b

d
t

3

r
b
p
o
o
R
p
w
A
a
i
t

a
v
d

Fig. 17. Comparison of the prediction performance of PINN and DNN models for the
wo-dimensional Taylor–Green vortex at 𝑡 = 17 s and  = 0.05. The blank regions are
redictions outside the range of the ground truth.

Fig. 18. Comparison of the prediction performance of the reduced PINN and DNN
models for the two-dimensional Taylor–Green vortex at 𝑡 = 17 s and  = 0.05. The
lank regions are predictions outside the range of the ground truth.

ata from 𝑡 = 17 s in the training, the models are still able to predict
he flow variables at this point in time.

.5. Effect of spatial distribution on prediction

In the investigations above, the data points for each  value are
andomly distributed in the flow domain and the training data at the
oundaries and walls are kept fixed. In this section, the variation in
erformance of data driven ANNs with a change in spatial distribution
f the data points for a given  value is analyzed. That is, a Region
f Interest (ROI) is specified and the data points are distributed in this
OI. This space-specific distribution of data in the ROI is termed as
rescribed distribution in this work. An example is illustrated in Fig. 19,
here the ROI is the near-wall region of an arbitrarily shaped body.
dditionally, data-free training is investigated, where only data points
t boundaries are used as ground truth data. In such a case, the red dots
n Fig. 19 disappear. The ANN models for each case are trained with
he same hyperparameters as defined in the above discussed results.
370
Fig. 19. Distribution of data points for a general example of a two-dimensional flow
around an arbitrary shape with a region of interest (ROI) near the wall. The boundary
points 𝑁𝑏 and 𝑁𝑤 are shown with black and blue dots, and the domain points 𝑁𝑑
re shown with yellow dots. All these points are kept fixed for each training run. The
ariable data points with existing ground truth data, 𝑁𝑑,1 ⊆ 𝑁𝑑 are denoted by the red
ots.

Fig. 20. Error density for the potential flow around a cylinder when trained with a
concentrated spatial distribution of data points.  = 0.05 with a near-wall ROI (top)
and, data-free prediction (bottom).

For potential flow problems, the ROI is the near-wall region and the
data points for the 𝐿𝐼 loss at  = 0.05 are distributed near the wall of
the cylinder and the boundary of the Rankine oval. The 𝐿𝐼𝐼 loss for
the PINN is calculated using randomly distributed points as described
in Section 2.2.

As shown in Fig. 20 (top), for the cylinder case, the prediction
accuracy of the PINN is with an 𝐿2 error of 2.64 × 10−3 far better than
the DNN with an 𝐿2 error of 6.1×10−2. However, it can also be seen for
the DNN that the flow field near the wall of the cylinder and domain
boundaries is predicted with comparatively lower error than the rest
of the flow field. This explains the dependence of data-driven ANNs on
the spatial distribution of the training data. A similar performance is
shown in Fig. 20 (bottom) for the data-free PINNs with only boundary
conditions as constraints. For the data-free models, the 𝐿2 error with
the PINN is 7.7 × 10−4, whereas the DNN prediction has an 𝐿2 error of
6.45 × 10−2.

Similar results are obtained for the potential flow around the Rank-
ine oval. Both ANN models have a reduced prediction accuracy when
trained on ground truth data concentrated near the boundary of the
Rankine oval. As shown in Fig. 21 (top), even the PINN struggles to
predict the flow field near the domain boundaries when training data

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

f
f
c

Fig. 21. Error density for the potential flow around the Rankine oval when trained
with a concentrated spatial distribution of data points. Prediction corresponding to
 = 0.05 with a near-wall ROI (top), and data-free prediction (bottom).

rom ground truth is concentrated near the boundaries. However, the
low field near the wall, which has higher velocity gradients and is
ritical to the flow development, is still well reconstructed. The 𝐿2 error

for the PINN is 4.26 × 10−3 in comparison to 5.6 × 10−1 for the DNN. In
case of the DNN, in areas in the vicinity of the wall (10 cell lengths),
the prediction seems to be marginally better. While considering the
data-free case in Fig. 21 (bottom), both the PINN and DNN show
improvements in prediction accuracy. In this case, the PINN has an 𝐿2
error of 2.4 × 10−3, while the error in case of the DNN is 4.98 × 10−2.

For the Blasius flow case, the input to the ANN is defined by the
variable 𝜂. The ROIs are not randomly selected, but they are defined
based on the boundary conditions given by Eqs. (18)–(20). It can be
observed from the prediction results shown in Fig. 22 that the model
accuracy is highly dependent on the distribution of data. Both the PINN
and DNN have a decreased prediction accuracy when trained on data
at 𝜂 = 0 and 5 ≥ 𝜂 ≤ 10 having the same amount of ground truth data
as at  = 0.2. The PINN has an 𝐿2 error of 2.1 × 10−2 and the DNN
has an 𝐿2 error of 4.1 × 10−1, which are one order of magnitude higher
than the 𝐿2 error from training with randomly distributed ground truth
data.

A similar analysis is conducted for the two-dimensional Taylor–
Green vortex, such that the training data from the ground truth is
concentrated near the domain boundaries and corresponds to  = 0.05.
As observed in Fig. 23, both the PINN and DNN fail to predict the
velocity and pressure fields. Although both models have a reduced
accuracy compared to the models trained on randomly distributed data,
the velocity predictions from the PINN are able to capture important
vortex structures, while the DNN completely fails to reconstruct the
velocity field. The 𝐿2 error for both velocity components predicted by
the PINN is 7.1×10−1 and for predictions by the DNN 1.52. Both models
achieve a comparable accuracy in the prediction of the pressure field
with 𝐿2 errors of 1.54 and 1.22 for PINN and DNN respectively.

The effect of the distribution of training data can be observed in
Fig. 23, where the models are able to reconstruct the fields near domain
boundaries with more accuracy as compared to rest of the domain.
When the distribution of ground truth data is concentrated around
371

the regions of high pressure gradients with  = 0.05, the prediction
Fig. 22. Comparison of the predicted velocity profiles in the Blasius boundary layer by
PINN, DNN, and the exact solution. The ground truth is defined by only the boundary
conditions and the number of data points corresponding to  = 0.2.

Fig. 23. Comparison of the prediction performance of PINN and DNN models for the
two-dimensional Taylor–Green vortex at 𝑡 = 17 s and  = 0.05. Training data from
ground truth is prescribed near the boundaries and the blank regions are predictions
outside the range of the ground truth.

accuracy of both PINNs and DNNs improves as shown in Fig. 24. The
vortical structures are captured and also the DNN is able to reconstruct
the pressure field with an 𝐿2 error of 3.5 × 10−1. The prediction of the
𝑥-component of the velocity field improves the most with an 𝐿2 error of
1.1×10−1 and 1.3×10−1 from the PINN and DNN respectively. The above
results highlight the importance of integrating the governing physics
in the loss function of ANNs and the effect of distribution of training
data from the ground truth on the predictive performance of the two-
dimensional Taylor–Green vortex. The PINNs show better performance
than DNNs for all data distributions. Both models perform best when
training data is randomly distributed.

A summary of the prediction results for the above discussed flow
problems is shown in Table 3. For each flow problem investigated in
this work, the PINNs outperform the DNNs. The largest difference in
performance of both models is observed for potential flow, while both
models have comparable performance for the two-dimensional Taylor–
Green vortex. For the potential flow and Blasius case, it is also observed
that the DNN-to-PINN 𝐿2 error ratio is significantly higher when the
ground truth data is prescribed in the ROI defined by boundaries
or high gradients or the data-free case, compared to the randomly
distributed case.

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

t

t
2
a
p
i
3
f
T
d

Table 3
Prediction accuracy of flow problems for different ANN configurations, amount of ground truth data used in training, and distribution of training data on the grid. BC: Boundary
condition, PC: Centers of high pressure.

Flow case  Ground truth PINN 𝐿2 Error DNN 𝐿2 Error DNN-to-PINN
distribution 𝐿2 error ratio

Potential flow: cylinder
0.05 Random 8.2 × 10−4 1.4 × 10−3 1.7
0.05 Prescribed 2.64 × 10−3 6.1 × 10−2 23.10
0.0 Boundary conditions 7.7 × 10−4 6.45 × 10−2 83.70

Potential flow: Rankine oval
0.05 Random 3.0 × 10−4 1.2 × 10−3 4.00
0.05 Prescribed 4.26 × 10−3 5.6 × 10−1 131.40
0.0 Boundary conditions 2.4 × 10−3 4.98 × 10−2 20.75

Blasius boundary layer flow 0.2 Random 1.7 × 10−3 2.4 × 10−3 1.41
0.2 Boundary conditions 2.1 × 10−2 4.1 × 10−1 19.50

2D Taylor–Green vortex

0.05 Random 1.7 × 10−2 4.9 × 10−2 2.88
0.05 Random-reduced 9.9 × 10−2 1.34 × 10−1 1.35
0.05 Prescribed-BC 7.193 × 10−1 1.52 2.11
0.05 Prescribed-PC 1.48 × 10−1 2.1 × 10−1 1.41
A
i
u
s
h
d
T
d
a
o
o
e
i
I

P


Fig. 24. Comparison of the prediction performance of PINN and DNN models for the
wo-dimensional Taylor–Green vortex at 𝑡 = 17 s and  = 0.05. Training data from

ground truth is prescribed near the high pressure regions and the blank regions are
predictions outside the range of the ground truth.

3.6. Effect of noise in training data

After evaluating the performance of DNNs and PINNs against vari-
ations in training data distribution, the effect of noise in training
data is investigated. This noise scaling represents the Signal to Noise
Ratio (SNR) metric commonly used for measuring devices used for
experiments. As discussed in Section 1, deep learning based PINNs can
be used to extrapolate flow information from sensors on vehicles under
on-road conditions. To replicate noisy sensor data, training data is
embedded with Gaussian noise. The noise is scaled to be between 10%
and 20% of the standard deviation inherent in the velocity data across
the domain. An example for the impact of noise on flow structures is
shown for the potential flow around a Rankine oval in Fig. 25.

Both the PINN and DNN are trained on training data with a varying
SNR and  = 0.2. The training hyperparameters are kept similar
o the models used in Section 3.2 and both models are trained for
0,000 epochs. The errors in predicted flow fields for flow around
Rankine oval are shown in Fig. 26. As observed, the inclusion of

hysical constraints helps the reconstruction in the presence of noise
n the training data. The prediction error from PINN is 1.704×10−3 and
.08×10−3 for 10% and 20% noise. In comparison, the prediction error
or  = 0.2 from a PINN trained without noise in data is 1.57 × 10−3.
hus, the prediction error of PINN increases by 8% and 96% for training
372

ata with 10% and 20% noise respectively. On the other hand, the d
Fig. 25. Noise in training data for potential flow around a Rankine oval.

performance of DNN degrades heavily with noisy training data. When
compared with the DNN trained on data without noise, the prediction
error increases by 100% and 600% for 10% and 20% noise.

4. Conclusion and outlook

In this work, the performance of data-driven ANNs is investigated
for four classical flow problems. The ANNs are based on two network
configurations: a classical DNN architecture and a PINN, the latter
enforcing physical constraints in the loss function. The amount and
location of ground truth data employed in training are varied for both
architectures, and the effect on the prediction accuracy is compared.

For the potential flow configurations of a cylinder and Rankine oval,
the results show lower errors using PINNs when less ground truth data
is available for training. For the cylinder case, PINNs performed better
for all  values. Different results for ANNs are obtained for potential
flow around a Rankine oval, where DNNs perform better for  > 0.38.

dditionally, an analysis on the location of the ground truth data used
n the training was performed. In contrast to the data-driven training
sing randomly distributed ground truth data, training with prescribed
ampling of data points for potential flow cases have comparatively
igher 𝐿2 errors. Thus, the distribution of ground truth data for data-
riven cases is an important factor for improving prediction accuracy.
he data-free training has better prediction accuracy than the data-
riven training with prescribed sampling of data points. The results
re, however, still worse than the case with the random distribution
f training data. However it was observed that the PINNs significantly
utperformed DNNs, when the training data was prescribed. This is
specially important for real-world applications, for instance when lim-
ted sensor measurements are available based on location constraints.
n this case, the PINN would be an obvious choice over DNN.

Summarizing the observations from the Blasius boundary layer flow,
INNs have a better prediction accuracy for all  values except at
= 0.4, where both the PINN and DNN have similar accuracy. Data-
riven models with ground truth data concentrated near the boundaries

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.

h
g
d
o
t
f

v
d
a
t
s
o
t
c
t
e
m

d
f
a
t
p
p
t
b
B
m
a
a
s
u
d
l

P
h
s
t
i
t
h
n
g
t
n
o

m
l
a

Fig. 26. Error density plots for flow around a Rankine oval when trained on noisy data with  = 0.2.
t
o
T
p
m
g
o
n
c
m
l
s
t
t

C

M
I
C
v
A
a

D

i
t

D

A

J
N
b
f
F
n
g
P

ave a higher 𝐿2 error in velocity profiles compared to the case, when
round truth data is randomly distributed. Even for the prescribed data
istribution, the PINN achieves an 𝐿2 error one order lower than that
f the DNN. Given the availability of ground truth data corresponding
o  ≥ 0.4 and a random distribution of ground truth data, velocity
ields can be predicted with higher accuracy using PINNs.

The unsteady flow problem of the two-dimensional Taylor–Green
ortex is solved using the S2S method, where each time-step is in-
ividually trained and solutions from previous time-steps are used as
dditional constraints. Both PINN and DNN data-driven models when
rained on randomly distributed ground truth, are able to capture flow
tructures and reconstruct velocity and pressure fields. For all values
f  investigated in this work, PINNs have better prediction accuracy
han DNNs. Additionally, model performance is compared for different
ell size in grid and also for prescribed distribution of ground truth in
raining. It is observed that the PINN is able to outperform the DNN
ven when trained for larger cell sizes. However, performance of both
odels improved when the grid cell size is reduced from 0.05 to 0.02.

When trained with ground truth data distributed only near the
omain boundaries, PINNs have a better prediction of the velocity
ield compared to DNNs. Both models have a comparable prediction
ccuracy for the pressure field. When compared with the results from
he randomly distributed data-driven training, both models have poor
redictions and fail to reconstruct the velocity and pressure fields. The
rediction accuracy of both PINNs and DNNs improved when ground
ruth data is distributed around the regions of high pressure gradients,
ut is still lower than the randomly distributed data-driven training.
ased on the above results, it can be concluded that S2S data-driven
odels implemented for the unsteady flow problem in this work have
strong dependence on spatial distribution of ground truth in training

nd the prediction accuracy can be improved by using a smaller cell
ize. Further improvement of the predictive capability of PINNs for
nsteady flow problems may be possible with normalization of training
ata to a common range and application of weighing functions for 𝐿𝐼𝐼
oss terms.

Furthermore, an analysis to compare the training costs for both the
INN and DNN was performed. As expected, it is found that PINNs
ave higher training cost compared to DNNs, even by a factor of ten in
ome cases. But it is observed that PINNs consistently perform better
han DNNs, especially when the data is sparse and they are located
n critical locations such as near the wall. Furthermore, under noisy
raining data, PINNs perform significantly better than DNNs, which
ad a loss in accuracy of 100% compared to 8% for PINN under 10%
oise in training data. In many practical problems of interest, data is
enerally sparse and also noisy. Hence, the compromise with the higher
raining costs provides an ANN with higher accuracy, which is robust to
oise and data sparsity. This is observed to be a significant advantage
ffered by PINNs, albeit the higher computational costs.

To the knowledge of the authors, the investigation in this
anuscript is one of the first attempts to quantify the amount and

ocation of training data when comparing the performance of PINNs
373

nd DNNs, along with inclusion of the effect of noise. In this case, J
he investigations are limited to classical flow problems, where it is
bserved that this choice significantly affects the prediction accuracy.
his finding could potentially be exploited to utilize the superior
erformance of PINNs in cases, where limited and concentrated sensor
easurements are available for real-world applications. For a fixed

eometry of a car body, a version of the PINN with constraints based
n the Navier–Stokes equations can be trained on the sparse and
oisy surface sensor data, to predict flow fields for different on-road
onditions. S2S learning can be used to constantly feed new data to the
odel at successive time intervals, while preserving the information

earned from the previous time intervals. The findings in this work
erve as a benchmark for such physics-based machine learning methods
o be extended to realistic flow cases in the future, to complement
raditional solvers and reduce computation costs.

RediT authorship contribution statement

Rishabh Puri: Writing – original draft, Validation, Software,
ethodology, Investigation. Junya Onishi: Validation, Methodology,

nvestigation. Mario Rüttgers: Writing – review & editing, Supervision,
onceptualization. Rakesh Sarma: Writing – review & editing, Super-
ision, Conceptualization. Makoto Tsubokura: Project administration.
ndreas Lintermann: Writing – review & editing, Resources, Project
dministration.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The research leading to these results has been conducted in the
oint Laboratory for Extreme Scale Computing (JLESC) project: Deep
eural Networks for CFD Simulations. Furthermore, the research has
een performed in the CoE RAISE project, which receives funding
rom the European Union’s Horizon 2020 – Research and Innovation
ramework Programme H2020-INFRAEDI-2019-1 under grant agreement
o. 951733. The authors gratefully acknowledge the computing time
ranted by the JARA Vergabegremium and provided on the JARA
artition part of the supercomputer JURECA [49] at Forschungszentrum

ülich.

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.
References

[1] L. Euler, Principes généraux du mouvement des fluides, Mém. Acad. Sci. Berl.
11 (1757) 274–315.

[2] G.G. Stokes, On the theories of the internal friction of fluids in motion and of
the equilibrium and motion of elastic solids, Trans. Camb. Phil. Soc. 8 (1845)
287–319.

[3] G. Calzolari, W. Liu, Deep learning to replace, improve, or aid CFD analysis in
built environment applications: A review, Build. Environ. 206 (2021) 108315,
http://dx.doi.org/10.1016/j.buildenv.2021.108315.

[4] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707,
http://dx.doi.org/10.1016/j.jcp.2018.10.045.

[5] X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow approxi-
mation, in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 481–490, http://dx.doi.org/10.1145/
2939672.2939738.

[6] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-
informed machine learning, Nat. Rev. Phys. 3 (6) (2021) 422–440, http://dx.
doi.org/10.1038/s42254-021-00314-5.

[7] N. Thuerey, K. Weißenow, L. Prantl, X. Hu, Deep learning methods for Reynolds-
averaged Navier–Stokes simulations of airfoil flows, AIAA J. 58 (1) (2020) 25–36,
http://dx.doi.org/10.2514/1.J058291, arXiv:https://doi.org/10.2514/1.J058291.

[8] M. Matsuo, K. Fukami, T. Nakamura, M. Morimoto, K. Fukagata, Reconstructing
three-dimensional bluff body wake from sectional flow fields with convolutional
neural networks, SN Comput. Sci. 5 (3) (2024) 306, http://dx.doi.org/10.1007/
s42979-024-02602-0.

[9] V. Sekar, Q. Jiang, C. Shu, B.C. Khoo, Fast flow field prediction over airfoils
using deep learning approach, Phys. Fluids 31 (5) (2019) 057103, http://dx.doi.
org/10.1063/1.5094943.

[10] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomed-
ical image segmentation, in: N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi
(Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, Springer International Publishing, Cham, 2015, pp. 234–241.

[11] J. Chen, J. Viquerat, E. Hachem, U-net architectures for fast prediction of
incompressible laminar flows, 2019, arXiv:1910.13532.

[12] M. Jolaade, V.L.S. Silva, C.E. Heaney, C.C. Pain, Generative networks ap-
plied to model fluid flows, in: D. Groen, C. de Mulatier, M. Paszynski, V.V.
Krzhizhanovskaya, J.J. Dongarra, P.M.A. Sloot (Eds.), Computational Science –
ICCS 2022, Springer International Publishing, Cham, 2022, pp. 742–755.

[13] S.R. Bukka, R. Gupta, A.R. Magee, R.K. Jaiman, Assessment of unsteady flow
predictions using hybrid deep learning based reduced-order models, Phys. Fluids
33 (1) (2021) 013601, http://dx.doi.org/10.1063/5.0030137.

[14] S. Fotiadis, E. Pignatelli, M.L. Valencia, C.D. Cantwell, A.J. Storkey, A.A. Bharath,
Comparing recurrent and convolutional neural networks for predicting wave
propagation, 2020, ArXiv abs/2002.08981.

[15] F. Sofos, D. Drikakis, I.W. Kokkinakis, Deep learning architecture for sparse and
noisy turbulent flow data, Phys. Fluids 36 (3) (2024) 035155, http://dx.doi.org/
10.1063/5.0200167.

[16] J. Chen, E. Hachem, J. Viquerat, Graph neural networks for laminar flow
prediction around random two-dimensional shapes, Phys. Fluids 33 (12) (2021)
123607, http://dx.doi.org/10.1063/5.0064108.

[17] M. Lino, S. Fotiadis, A.A. Bharath, C.D. Cantwell, Multi-scale rotation-equivariant
graph neural networks for unsteady Eulerian fluid dynamics, Phys. Fluids 34 (8)
(2022) 087110, http://dx.doi.org/10.1063/5.0097679.

[18] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation
in machine learning: A survey, J. Mach. Learn. Res. 18 (1) (2017) 1–43.

[19] S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis, Physics-informed neural
networks (PINNs) for fluid mechanics: a review, Acta Mech. Sin. 37 (12) (2021)
1727–1738, http://dx.doi.org/10.1007/s10409-021-01148-1.

[20] K. Um, R. Brand, Y.R. Fei, P. Holl, N. Thuerey, Solver-in-the-loop: Learning from
differentiable physics to interact with iterative PDE-solvers, in: Proceedings of
the 34th International Conference on Neural Information Processing Systems,
NIPS ’20, Curran Associates Inc., Red Hook, NY, USA, 2020, http://dx.doi.org/
10.48550/arXiv.2007.00016.

[21] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechan-
ics, Annu. Rev. Fluid Mech. 52 (1) (2020) 477–508, http://dx.doi.org/10.1146/
annurev-fluid-010719-060214.

[22] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-net: Learning PDEs from data, in: J. Dy,
A. Krause (Eds.), Proceedings of the 35th International Conference on Machine
Learning, in: Proceedings of Machine Learning Research, vol. 80, PMLR, 2018,
pp. 3208–3216, http://dx.doi.org/10.48550/arXiv.1710.09668.

[23] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations
using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018) 8505–8510, http:
//dx.doi.org/10.1073/pnas.1718942115.

[24] A. Arzani, J.-X. Wang, R. D’Souza, Uncovering near-wall blood flow from sparse
data with physics-informed neural networks, Phys. Fluids 33 (2021) 071905,
http://dx.doi.org/10.1063/5.0055600.
374
[25] Z. Mao, A.D. Jagtap, G.E. Karniadakis, Physics-informed neural networks for
high-speed flows, Comput. Methods Appl. Mech. Engrg. 360 (2020) 112789,
http://dx.doi.org/10.1016/j.cma.2019.112789.

[26] M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations, Science 367 (6481) (2020)
1026–1030, http://dx.doi.org/10.1126/science.aaw4741.

[27] E. Illarramendi, A. Alguacil, M. Bauerheim, A. Misdariis, C. Benedicte, E.
Benazera, Towards an hybrid computational strategy based on Deep Learning
for incompressible flows, in: Proceedings of the AIAA AVIATION 2020 FORUM,
2020, http://dx.doi.org/10.2514/6.2020-3058.

[28] N. Thuerey, T. Pfaff, Mantaflow: An extensible framework for fluid simulation,
2016, http://mantaflow.com/index.html, (Accessed 01 July 2023).

[29] H. Ma, Y. Zhang, N. Thuerey, X. Hu, O.J. Haidn, Physics-driven learning of
the steady Navier-Stokes equations using deep convolutional neural networks,
Commun. Comput. Phys. 32 (3) (2022) 715–736, http://dx.doi.org/10.4208/cicp.
OA-2021-0146.

[30] J.-Z. Peng, N. Aubry, Y.-B. Li, M. Mei, Z.-H. Chen, W.-T. Wu, Physics-informed
graph convolutional neural network for modeling geometry-adaptive steady-
state natural convection, Int. J. Heat Mass Transfer 216 (2023) 124593, http:
//dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124593.

[31] W. Wu, X. Feng, H. Xu, Improved deep neural networks with domain decompo-
sition in solving partial differential equations, J. Sci. Comput. 93 (1) (2022) 20,
http://dx.doi.org/10.1007/s10915-022-01980-y.

[32] A. Malek, A. Emami Kerdabadi, Solving differential equations by artificial neural
networks and domain decomposition, Iran. J. Sci. 47 (4) (2023) 1233–1244,
http://dx.doi.org/10.1007/s40995-023-01481-z.

[33] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural
networks on discrete domains for conservation laws: Applications to forward and
inverse problems, Comput. Methods Appl. Mech. Engrg. 365 (2020) 113028,
http://dx.doi.org/10.1016/j.cma.2020.113028.

[34] E.H.W. Ang, G. Wang, B.F. Ng, Physics-informed neural networks for low
Reynolds number flows over cylinder, Energies 16 (12) (2023) http://dx.doi.
org/10.3390/en16124558.

[35] V. Grimm, A. Heinlein, A. Klawonn, Learning the solution operator of
two-dimensional incompressible Navier-Stokes equations using physics-aware
convolutional neural networks, 2023, arXiv:2308.02137.

[36] P.-Y. Chuang, L.A. Barba, Experience report of physics-informed neural networks
in fluid simulations: pitfalls and frustration, 2022, http://dx.doi.org/10.48550/
ARXIV.2205.14249.

[37] R. Palin, V. Johnston, S. Johnson, A. D’Hooge, B. Duncan, J.I. Gargoloff, The
aerodynamic development of the tesla model s - part 1: Overview, in: SAE
2012 World Congress & Exhibition, SAE International, 2012, http://dx.doi.org/
10.4271/2012-01-0177.

[38] A. D’Hooge, R.B. Palin, S. Johnson, B. Duncan, J.I. Gargoloff, The aerodynamic
development of the tesla model s - part 2: Wheel design optimization, in: SAE
2012 World Congress & Exhibition, SAE International, 2012, http://dx.doi.org/
10.4271/2012-01-0178.

[39] M. Rüttgers, J. Park, D. You, Large-eddy simulation of turbulent flow over the
DrivAer fastback vehicle model, J. Wind Eng. Ind. Aerodyn. 186 (2019) 123–138,
http://dx.doi.org/10.1016/j.jweia.2019.01.003.

[40] A.A. Lawson, R.G. Dominy, D.B. Sims-Williams, P. Mears, A comparison be-
tween on-road and wind tunnel surface pressure measurements on a mid-sized
hatchback, in: SAE World Congress & Exhibition, SAE International, 2007, http:
//dx.doi.org/10.4271/2007-01-0898.

[41] D. Zhang, S. Subramanian, R. Hampson, W. Jackson, K. Kontis, G. Dobie, C.
Macleod, Automotive aerodynamics sensing using low-profile pressure sensor
strip, IEEE Trans. Instrum. Meas. 72 (2023) 1–9, http://dx.doi.org/10.1109/TIM.
2023.3292963.

[42] L. Prandtl, Über flüssigkeitsbewegung bei sehr kleiner reibung, in: A. Krazer
(Ed.), Chronik des III. Internationalen Mathematiker- Kongresses in Heidelberg,
ACM Press, Heidelberg, 1904, pp. 484–491.

[43] P.R.H. Blasius, Grenzschichten in flussigkeiten mit kleiner reibung, Z. Angew.
Math. Phys. 56 (1908) 1–37.

[44] G.I.S. Taylor, A.E. Green, Mechanism of the production of small eddies from
large ones, Proc. R. Soc. A: Math. Phys. Eng. Sci. 158 (1937) 499–521.

[45] B.L. Kalman, S.C. Kwasny, Why tanh: choosing a sigmoidal function, in: Pro-
ceedings of IJCNN International Joint Conference on Neural Networks, Vol. 4,
1992, pp. 578–581, http://dx.doi.org/10.1109/IJCNN.1992.227257.

[46] R. Mattey, S. Ghosh, A novel sequential method to train physics informed
neural networks for Allen Cahn and Cahn Hilliard equations, Comput. Methods
Appl. Mech. Engrg. 390 (2022) 114474, http://dx.doi.org/10.1016/j.cma.2021.
114474.

[47] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y. Bengio,
Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015,
http://dx.doi.org/10.48550/ARXIV.1412.6980.

[48] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale ma-
chine learning, SIAM Rev. 60 (2) (2018) 223–311, http://dx.doi.org/10.1137/
16M1080173.

[49] D. Krause, P. Thörnig, JURECA: Modular supercomputer at Jülich Supercomput-
ing Centre, J. Large-Scale Res. Facil. 4 (2018) http://dx.doi.org/10.17815/jlsrf-
4-121-1.

http://refhub.elsevier.com/S0167-739X(24)00372-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb2
http://dx.doi.org/10.1016/j.buildenv.2021.108315
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1145/2939672.2939738
http://dx.doi.org/10.1145/2939672.2939738
http://dx.doi.org/10.1145/2939672.2939738
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.2514/1.J058291
https://doi.org/10.2514/1.J058291
http://dx.doi.org/10.1007/s42979-024-02602-0
http://dx.doi.org/10.1007/s42979-024-02602-0
http://dx.doi.org/10.1007/s42979-024-02602-0
http://dx.doi.org/10.1063/1.5094943
http://dx.doi.org/10.1063/1.5094943
http://dx.doi.org/10.1063/1.5094943
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb10
http://arxiv.org/abs/1910.13532
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb12
http://dx.doi.org/10.1063/5.0030137
http://arxiv.org/abs/2002.08981
http://dx.doi.org/10.1063/5.0200167
http://dx.doi.org/10.1063/5.0200167
http://dx.doi.org/10.1063/5.0200167
http://dx.doi.org/10.1063/5.0064108
http://dx.doi.org/10.1063/5.0097679
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb18
http://dx.doi.org/10.1007/s10409-021-01148-1
http://dx.doi.org/10.48550/arXiv.2007.00016
http://dx.doi.org/10.48550/arXiv.2007.00016
http://dx.doi.org/10.48550/arXiv.2007.00016
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.48550/arXiv.1710.09668
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.1063/5.0055600
http://dx.doi.org/10.1016/j.cma.2019.112789
http://dx.doi.org/10.1126/science.aaw4741
http://dx.doi.org/10.2514/6.2020-3058
http://mantaflow.com/index.html
http://dx.doi.org/10.4208/cicp.OA-2021-0146
http://dx.doi.org/10.4208/cicp.OA-2021-0146
http://dx.doi.org/10.4208/cicp.OA-2021-0146
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124593
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124593
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124593
http://dx.doi.org/10.1007/s10915-022-01980-y
http://dx.doi.org/10.1007/s40995-023-01481-z
http://dx.doi.org/10.1016/j.cma.2020.113028
http://dx.doi.org/10.3390/en16124558
http://dx.doi.org/10.3390/en16124558
http://dx.doi.org/10.3390/en16124558
http://arxiv.org/abs/2308.02137
http://dx.doi.org/10.48550/ARXIV.2205.14249
http://dx.doi.org/10.48550/ARXIV.2205.14249
http://dx.doi.org/10.48550/ARXIV.2205.14249
http://dx.doi.org/10.4271/2012-01-0177
http://dx.doi.org/10.4271/2012-01-0177
http://dx.doi.org/10.4271/2012-01-0177
http://dx.doi.org/10.4271/2012-01-0178
http://dx.doi.org/10.4271/2012-01-0178
http://dx.doi.org/10.4271/2012-01-0178
http://dx.doi.org/10.1016/j.jweia.2019.01.003
http://dx.doi.org/10.4271/2007-01-0898
http://dx.doi.org/10.4271/2007-01-0898
http://dx.doi.org/10.4271/2007-01-0898
http://dx.doi.org/10.1109/TIM.2023.3292963
http://dx.doi.org/10.1109/TIM.2023.3292963
http://dx.doi.org/10.1109/TIM.2023.3292963
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb42
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00372-8/sb44
http://dx.doi.org/10.1109/IJCNN.1992.227257
http://dx.doi.org/10.1016/j.cma.2021.114474
http://dx.doi.org/10.1016/j.cma.2021.114474
http://dx.doi.org/10.1016/j.cma.2021.114474
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.17815/jlsrf-4-121-1
http://dx.doi.org/10.17815/jlsrf-4-121-1
http://dx.doi.org/10.17815/jlsrf-4-121-1

Future Generation Computer Systems 161 (2024) 361–375R. Puri et al.
Rishabh Puri is currently pursuing his doctoral degree
at the Engler-Bunte Institute of the Karlsruhe Institute for
Technology and he is working on numerical simulations of
non-premixed ammonia combustion in porous media. Pre-
viously, he worked at the Simulation and Data Laboratory
‘‘Highly Scalable Fluid & Solids Engineering’’ (SDL FSE) of
the Jülich Supercomputing Centre (JSC) in the domain of
ML/AI in Fluid Dynamics. His research focus includes Direct
Numerical Simulations (DNS) of turbulent reactive flows
and development of Machine Learning (ML) methods for
Computational Fluid Dynamics (CFD) and combustion.

Junya Onishi received the Ph.D. degree in Engineering
from the University of Tokyo, Japan in 2004. He is currently
a Research Scientist at the RIKEN Center for Computational
Science, Japan. His research interests include the develop-
ment and application of computational methods for solving
fluid mechanical problems in industrial fields.

Mario Rüttgers is working as a postdoctoral researcher at
the Simulation and Data Laboratory ‘‘Highly Scalable Fluid
& Solids Engineering’’ (SDL FSE) of the Jülich Supercom-
puting Centre (JSC), Forschungszentrum Jülich. He received
his doctoral degree at the Institute of Aerodynamics (AIA),
RWTH Aachen University, in 2023. He is associated with
the Helmholtz School for Data Science in Life, Earth and
Energy (HDS-LEE). His research focuses on combining com-
putational fluid dynamics and machine learning techniques
to improve diagnoses and treatments of respiratory diseases.
375
Rakesh Sarma obtained his Ph.D. from Delft University
of Technology, Netherlands, in 2018. His doctoral thesis
was on the development of Bayesian inference and reduced
order modeling methods for prediction of instabilities in
aeroelastic structures. Thereafter, he worked at the Dutch
National Center for Mathematics and Computer Science in
Amsterdam in the domain of ML/AI in space weather and
stratified turbulence applications. Currently, he works at
Forschungszentrum Jülich on development of parallel and
scalable AI methods and workflows for HPC applications.

Makoto Tsubokura is a professor in the department of
computational science at the Kobe University, and also
a team leader of complex phenomena unified simulation
research team at RIKEN Center of Computational Science.
He got his Ph.D. in engineering from the university of
Tokyo in 1998. His research interests include HPC-CFD for
industrial applications, applied aerodynamics, and unified
continuum mechanics simulation. He is a fellow of the
Japan Society of Fluid Mechanics.

Andreas Lintermann is a postdoctoral researcher and group
leader of the SDL FSE at JSC, Forschungszentrum Jülich.
He is coordinating the European Center of Excellence in
Exascale Computing ‘‘Research on AI- and Simulation-Based
Engineering at Exascale’’ (CoE RAISE), leads the activi-
ties in the EuroCC/EuroCC2 and interTwin projects from
Jülich’s side, and is involved in the Industry Relations
Team of the institute. His research focuses on high-
performance computing, heterogeneous hardware, modular
supercomputing, artificial intelligence, bio-fluidmechanical
analyses of respiratory diseases, lattice-Boltzmann methods,
high-scaling meshing methods, and efficient multi-physics
coupling strategies.

	On the choice of physical constraints in artificial neural networks for predicting flow fields
	Introduction
	Methods
	Flow configurations
	Architecture of the ANNs

	Results
	Potential flow: Cylinder
	Potential flow: Rankine oval
	Blasius boundary layer flow
	2D Taylor–Green Vortex
	Effect of spatial distribution on prediction
	Effect of noise in training data

	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

