
Journal of Colloid and Interface Science 666 (2024) 457–471

Contents lists available at ScienceDirect

Journal of Colloid And Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

Temperature-induced migration of electro-neutral interacting colloidal 

particles

J.K.G. Dhont a,b,∗,1, W.J. Briels a,c,∗,1

a Forschungszentrum Juelich, Biomacromolecular Systems and Processes (IBI-4), Wilhelm-Johnen-Strasse, 52428 Juelich, Germany
b Heinrich Heine Universitaet, Department of Physics, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
c University of Twente, Computational Chemical Physics, PO Box 217, 7500 AE Enschede, the Netherlands

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O A B S T R A C T

Keywords:

Thermodiffusion

Thermal diffusion

Soret effect

Uncharged colloids

Interacting colloids

Temperature gradients

Smoluchowski equation

Fokker-Planck equation

Migration of colloidal particles induced by temperature gradients is commonly referred to as thermodiffusion, 
thermal diffusion, or the (Ludwig-)Soret effect. The thermophoretic force experienced by a colloidal particle that 
drives thermodiffusion consists of two distinct contributions: a contribution resulting from internal degrees of 
freedom of single colloidal particles, and a contribution due to the interactions between the colloids. We present 
an irreversible thermodynamics based theory for the latter collective contribution to the thermophoretic force. 
The present theory leads to a novel “thermophoretic interaction force” (for uncharged colloids), which has not 
been identified in earlier approaches. In addition, an 𝑁-particle Smoluchowski equation including temperature 
gradients is proposed, which complies with the irreversible thermodynamics approach.

A comparison with experiments on colloids with a temperature dependent attractive interaction potential over 
a large concentration and temperature range is presented. The comparison shows that the novel thermophoretic 
interaction force is essential to describe data on the Soret coefficient and the thermodiffusion coefficient.
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1. Introduction

Thermodiffusion of colloids has mostly been studied at very low 
concentrations where interactions between colloids can be neglected. 
These experiments, theories, and simulations probe single-particle ther-

mophoretic forces, which are due to the response of internal degrees of 
freedom of, for example, an electric double layer in case of charged 
colloids [1–11], a solvation layer [12–15], or adsorbed surfactant 
molecules [11,16,17]. Theoretical approaches are quite specific, de-

pending on the type of internal degrees of freedom that respond to 
a temperature gradient. General considerations on the single-particle 
level concerning interface phenomena can be found in Refs. [18–20].

Much less is known about the effect of interactions between colloids 
on their thermodiffusive behavior. Experimentally, a strong increase of 
the Soret and thermodiffusion coefficients due to colloid-colloid inter-

actions is found in Ref. [21] for suspensions of charged silica spheres 
at low ionic strength. For charged polystyrene spheres, a similar strong 
contribution due to the interactions to the thermodiffusion coefficient 
results in an increase of 15% relative to the single-particle value, even 
at a concentration as low as 2.3 wt% [4]. In Refs. [3,22], experi-

mental data on concentrated dispersions of an ionic sodium dodecyl 
sulfate (SDS) micellar system at various ionic strengths are reported, 
together with an attempt to quantitatively interpret these data (which 
will be discussed in some detail in section 4). Moreover, a strong am-

bient temperature dependence due to colloid-colloid interactions for 
the same system is found in Ref. [23]. The thermophoretic experi-

ments on electro-neutral uncharged sticky colloidal spheres in Ref. [24]

reveal both a pronounced concentration and ambient temperature de-

pendence of the Soret coefficient and thermodiffusion coefficient. These 
experimental data, which span a wide ranges of concentration and tem-

perature, will be compared to the theory developed in the present paper 
in sections 4 and 5.

There are only very few theoretical studies on the effect of inter-

colloidal interactions on thermodiffusion. In Refs. [25–27], the interac-

tion force between charged colloids is assumed to be given by the spatial 
gradient of a temperature dependent mean-field interaction potential. 
The thermophoretic force between colloids with excluded volume in-

teractions is stated in Refs. [28,29] to be proportional to the spatial 
derivative of an effective chemical potential. These approaches will 
be discussed in subsection 2.3 in some detail. One of the present au-

thors (JKGD) derived expressions for the thermodiffusion coefficient for 
colloids with excluded volume interactions to leading order in concen-

tration in Ref. [30] on the basis of thermodynamic arguments and in 
Ref. [31] to leading order in concentration for hard-spheres assuming 
the validity of a temperature-gradient modification of the well-known 
Smoluchowski equation. There has been valid criticism [32], however, 
on the purely thermodynamic treatment in Ref. [30], concerning the 
way in which entropic contributions have been accounted for. More-

over, as will be shown in the present paper, there is an additional 
thermophoretic force that has not been accounted for in Ref. [31], or 
any of the above mentioned theoretical approaches.

It is the purpose of this paper to develop a theory for the contribu-

tion of inter-colloidal interactions to the thermophoretic force experienced 
by electro-neutral, uncharged colloids. A contribution to the thermophoretic 
force due to interactions is predicted, which has not been considered before.

This newly predicted force will be shown to be essential to describe the 
experimental data on the Soret coefficient and the thermodiffusion coef-

ficient in Ref. [24] on colloids with a temperature dependent attractive 
interaction potential, over a wide range of temperature and concentra-

tion.

The thermodiffusion coefficient and the Soret coefficient as used 
throughout this paper are defined as follows. The flux of the number 
of colloids will be written as,
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𝐉𝑐 = −𝐷𝑐∇𝜌𝑐 −𝐷𝑇∇𝑇 , (1)
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where 𝐷𝑐 is the collective diffusion coefficient, 𝐷𝑇 is the thermodiffu-

sion coefficient, 𝜌𝑐 is the number concentration of colloids, and 𝑇 the 
temperature. For a closed system, the flux vanishes in the stationary 
state. In such a stationary state, the Soret coefficient is defined as,

𝑆𝑇 = − 1
𝜌𝑐

𝑑𝜌𝑐∕𝑑𝑧

𝑑𝑇 ∕𝑑𝑧
= 1

𝜌𝑐

𝐷𝑇

𝐷𝑐

, (2)

where gradients are assumed to extend along the 𝑧-direction. The Soret 
coefficient can be regarded as a thermophoretic response function, as it 
connects the concentration gradient resulting from a temperature gra-

dient per unit temperature gradient.

This paper is organized as follows. An expression for the ther-

mophoretic force is derived on the basis of linear irreversible thermody-

namics in section 2. Before the theory is presented, this section begins 
with a summary of all the approximations and assumptions that will be 
made, detailed justifications of which are discussed in Appendix A. As-

suming incompressibility of the solvent and colloids, and temperature 
independent partial molar volumes, the force on a colloidal particle in 
a concentration and temperature gradient is expressed in terms of spa-

tial gradients of an effective chemical potential and the heat-of-transfer 
in subsection 2.1. In subsection 2.2, gradients of the effective chem-

ical potential are expressed in terms of pressure gradients. The thus 
obtained identification of the pressure-driven forces allows for the de-

termination of an approximate expression for the heat-of-transfer in 
subsection 2.3, leading to a contribution to the total thermophoretic 
force due to colloid-colloid interactions that has not been identified 
in earlier theories. We refer to this force as the thermophoretic inter-

action force. Microscopic expressions for the various contributions to 
the total force on colloidal particles in terms of integrals of the pair-

correlation function are given in section 3. These expressions allow 
for a microscopic comparison of the theory for the Soret coefficient 
and experiments in section 4. Subsection 4.1 describes the experimen-

tal colloidal system of sticky hard spheres, and subsection 4.2 contains 
the comparison with theory. It turns out that the newly predicted ther-

mophoretic interaction force is essential to describe the experimental 
data. In section 5 the mobility is specified, and the resulting expression 
for the thermodiffusion coefficient is compared with experiments on the 
same colloidal system. On the basis of the obtained expression for the 
thermophoretic force on a colloid, a Smoluchowski equation that also 
applies to non-isothermal systems is proposed in section 6.

2. The forces acting on a colloid in concentration and 
temperature gradients

Here, we present a linear-irreversible thermodynamics approach to 
obtain the total force on a colloidal particle due to concentration- and 
temperature gradients. Of special interest is the thermophoretic force 
that results from interactions between the colloids.

Before embarking on the theory, we present first a list of approxi-

mation and assumptions that will be made, the justifications of which 
are given in Appendix A:

(1) Gravitational forces on the colloids that either lead to sedimenta-

tion or buoyancy are not explicitly included. These forces add to 
the forces that are explicitly discussed, and may be included in all 
equations below. For the experiments that we discuss these forces 
are irrelevant.

(2) Partial molar volumes of the colloids and the solvent molecules are 
assumed to be independent of pressure, concentration, and temper-

ature.

(3) The total pressure is assumed to be independent of position.

(4) The number of solvent molecules, residing in thin solvation layers 
around the surfaces of all colloids, and which interact directly with 
them, is negligible compared to the number of molecules within 

the bulk solvent.
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(5) Bulk solvent attains equilibrium quasi-instantaneously for each 
configuration of the colloids.

(6) The force on a colloidal particle due to heat conduction in the ab-

sence of mass transport will be neglected.

2.1. Irreversible thermodynamics approach

The purpose of this subsection is to derive an effective one-

component flux-force relation, which is given in eqs. (10), (11), and 
obtain from that eq. (15) for the force on a colloidal particle in terms 
of the heat-of-transfer, which is defined in eq. (17).

For the two-component system consisting of uncharged colloids and 
solvent molecules, the fundamental Onsager relations are formulated in 
terms of the colloidal-particle number flux 𝐉𝑐 , the number flux 𝐉𝑠 of 
solvent molecules, and the flux 𝐉𝑈 of internal energy 𝑈 [33–37],

𝐉𝑐 = 𝐿𝑐𝑐 𝐅𝑐 +𝐿𝑐𝑠 𝐅𝑠 +𝐿𝑐𝑈 𝐅𝑈 ,

𝐉𝑠 = 𝐿𝑠𝑐 𝐅𝑐 +𝐿𝑠𝑠 𝐅𝑠 +𝐿𝑠𝑈 𝐅𝑈 ,

𝐉𝑈 = 𝐿𝑈𝑐 𝐅𝑐 +𝐿𝑈𝑠 𝐅𝑠 +𝐿𝑈𝑈 𝐅𝑈 , (3)

where 𝐿𝑖𝑗 = 𝐿𝑗𝑖 are the as yet unknown Onsager coefficients, and the 
flux-driving single-particle forces are equal to,

𝐅𝑐 = −𝑇 ∇
𝜇𝑐

𝑇
,

𝐅𝑠 = −𝑇 ∇
𝜇𝑠

𝑇
,

𝐅𝑈 = 𝑇 ∇ 1
𝑇

, (4)

with 𝑇 the temperature, 𝜇𝑠 the chemical potential of the solvent 
molecules, and 𝜇𝑐 that of the colloids. Throughout this paper, fluxes are 
formulated in terms of number of particles instead of mass, so that 𝐅𝑐,𝑠

are the forces acting on a single colloidal particle and solvent molecule, 
respectively. A formulation in terms of mass fluxes is necessary when 
combined with convection as described by the Navier-Stokes equation. 
Here we consider only diffusive particle displacements, in the absence 
of macroscopic flow. The results that are thus obtained for forces on 
colloids can nevertheless be used in a more general description that in-

cludes macroscopic flow. We note that hydrodynamic interactions come 
into play when connecting the forces to fluxes, and are thus implicit in 
the Onsager coefficients. Hydrodynamic interactions are explicitly ac-

counted for in the derivation of an expression for the thermodiffusion 
coefficient in section 5, and the extension of the Smoluchowski equa-

tion to include temperature gradients in section 6.

To account for gravity (either leading to sedimentation or buoy-

ancy), the additional corresponding force −∇ (Δ𝑚𝐠 ⋅ 𝐫) could be added 
to the force 𝐅𝑐 on a colloidal particle in eq. (4), where Δ𝑚 is the differ-

ent in the mass of a colloidal particle and an equal volume of solvent, 𝐠
is the earth gravitational acceleration, and 𝐫 is the position of the col-

loid. As discussed in Appendix A point (1), the effect of gravity can be 
neglected for the experiments with which the theory will be compared.

Note that different notations are used for the energy flux by different 
authors. We employ the same notation as in Refs. [35,37], except that 
we write 𝐉𝑈 for the energy flux where they use 𝐉𝑞 . This saves us from 
using a (double) prime when introducing the measurable heat flux.

The colloidal particles as well as the solvent will be considered in-

compressible. We therefore assume that the partial molar volumes 𝑣𝑐 of 
a colloidal particle and 𝑣𝑠 of a solvent molecule do not depend on con-

centrations and pressure. As mentioned in the beginning of this section, 
it will furthermore be assumed in the following that these partial mo-

lar volumes are independent of temperature (see also Appendix A point 
(2)). The number concentration of solvent molecules within bulk sol-

vent is thus equal to 1∕𝑣𝑠, not to be confused with the thermodynamic 
solvent concentration 𝑁𝑠∕𝑉 , with 𝑁𝑠 the number of solvent molecules 
459
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Fluxes will be defined relative to a volume-fixed reference frame, 
which for the incompressible system under consideration reflects the ex-

perimental situation where the position of the sample cell is fixed with 
respect to the observer. Within the volume-fixed reference we have,

𝑣𝑠 𝐉𝑠 + 𝑣𝑐 𝐉𝑐 = 𝟎 . (5)

When a colloid is displaced, a number of 𝑣𝑐∕𝑣𝑠 ≫ 1 of solvent molecules 
is displaced in the opposite direction. There is thus a trivial contribution 
to the solvent flux equal to −(𝑣𝑐∕𝑣𝑠) 𝐉𝑐 . The remaining contribution to 
the solvent flux is equal to,

𝐉′
𝑠
= 𝐉𝑠 +

𝑣𝑐

𝑣𝑠

𝐉𝑐 = 𝟎 , (6)

where the latter equality follows from eq. (5).

Due to the high degree of incompressibility, the pressure 𝑝 relaxes 
towards a position independent value on a time scale during which the 
positions of the colloids are essentially unchanged, so that,

∇𝑝 = 𝟎 . (7)

Such adjustment of the pressure is entirely due to the flux 𝐉′
𝑠
, which 

thus vanishes for strictly incompressible systems within the volume-

fixed frame of reference. Apart from defining the frame of reference, 
eq. (6) expresses that for a fully packed, strictly incompressible system, 
there is no flux of solvent molecules in addition to that trivially associ-

ated with colloid displacements as mentioned above. A justification of 
the validity of eq. (7) is given in Appendix A point (3).

In case there is a difference between the specific mass density of the 
colloidal core and the solvent, there is a mass flux relative to the volume 
fixed frame. The diffusive nature of this mass flux is due to the dom-

inance of the friction force with the solvent experienced by a colloid 
over their inertial forces. The momentum of a colloid due to friction re-

laxes on a time scale of the order of a few nanoseconds, during which 
the colloid’s displacement is a very small fraction of its own size. Equa-

tions of motion for the colloid concentration that are coarse grained 
over a time interval of a few nanoseconds are therefore independent of 
the mass of the colloids, rendering equations of motion for the colloid 
concentration purely diffusive (provided that spatial gradients in the 
total pressure, as well as external shearing and tensile force are absent).

The flux 𝐉𝑈 is most conveniently replaced by the heat flux [35–37],

𝐉𝑞 = 𝐉𝑈 − ℎ𝑠 𝐉𝑠 − ℎ𝑐 𝐉𝑐 , (8)

where,

ℎ𝑠 =
𝜕𝐻(𝑁,𝑁𝑠, 𝑝, 𝑇 )

𝜕𝑁𝑠

, (9)

is the solvent partial molar enthalpy, with 𝐻 the enthalpy (as a function 
of the number 𝑁 of colloids, the number 𝑁𝑠 of solvent molecules, the 
pressure 𝑝 and temperature 𝑇 ), and similar for ℎ𝑐 . The heat flux 𝐉𝑞 is 
some times referred to as “the flux of measurable heat” (and is denoted 
in Ref. [35] by 𝐉′′

𝑞
). Transforming the Onsager flux-force relations in 

eqs. (3), (4) in terms of the new fluxes {𝐉𝑐 , 𝐉′𝑠, 𝐉𝑞}, and subsequently 
eliminating the solvent force 𝐅𝑠 using eq. (6), leads to,

𝐉𝑐 = 𝑐𝑐 𝐅′
𝑐
+𝑐𝑞 𝐅𝑞 ,

𝐉𝑞 = 𝑞𝑐 𝐅′
𝑐
+𝑞𝑞 𝐅𝑞 , (10)

where the new forces are equal to,

𝐅′
𝑐
= −𝑇 ∇ 𝜈

𝑇
+ 𝑇 ℎ ∇ 1

𝑇
,

𝐅𝑞 = 𝑇 ∇ 1
𝑇

. (11)

Here, the “effective chemical potential” is given by,

𝑣𝑐

𝜈 = 𝜇𝑐 −

𝑣𝑠

𝜇𝑠 , (12)
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and the “effective partial molar enthalpy” is equal to,

ℎ = ℎ𝑐 −
𝑣𝑐

𝑣𝑠

ℎ𝑠 . (13)

The new Onsager coefficients  can be expressed in terms of the original 
coefficients 𝐿 in eq. (3), and also obey Onsager’s symmetry relations.

It follows from eqs. (10), (11) that the colloid flux for isothermal 
transport is equal to 𝐉𝑐 = −𝑐𝑐 ∇𝜈, which is in accord with the well-

known expression 𝐅′
𝑐
= −∇𝜈 for the total force on a colloid for such 

isothermal systems. The mobility for isothermal colloid transport is 
therefore equal to 𝑐𝑐 , so that,

𝐉𝑐 = 𝑐𝑐 𝐅 , (14)

with 𝐅 the total force acting on a colloidal particle, including ther-

mophoretic contributions. It is thus found from eq. (10) for the colloid 
number flux, eq. (11) for the forces, and eqs. (12), (13) for the effective 
partial molar quantities, that,

𝐅 = −∇𝜈 − 1
𝑇

(
𝑞⋆ + 𝑇 𝑠

)
∇𝑇 , (15)

where the “effective partial molar entropy” is equal to,

𝑠 = 𝑠𝑐 −
𝑣𝑐

𝑣𝑠

𝑠𝑠 , (16)

with 𝑠𝑐,𝑠 the partial molar entropies (similarly defined as the partial 
molar enthalpy in eq. (9)), and where it is used that ℎ𝑐,𝑠 = 𝜇𝑐,𝑠 + 𝑇 𝑠𝑐,𝑠. 
Furthermore, the so-called heat-of-transfer is equal to,

𝑞⋆ =
𝑐𝑞

𝑐𝑐

, (17)

which has the following well-known interpretation [35–37]. For a con-

stant temperature it follows from eqs. (10), (11) that 𝐉𝑐 = 𝑐𝑐 𝐅′
𝑐

and 
𝐉𝑞 = 𝑞𝑐 𝐅′

𝑐
, and hence, 𝐉𝑞 = 𝑞⋆ 𝐉𝑐 (𝑇 = constant). This equation shows 

that 𝑞⋆ is the heat that is transported per colloidal particle at con-

stant temperature, hence the nomenclature “heat-of-transfer”. We adopt 
throughout this paper the proposed nomenclature in Ref. [35], making a 
distinction between the “heat-of-transfer” and the “energy-of-transfer”. 
The 𝑞⋆ includes heat transfer of a volume 𝑣𝑐 of solvent that is displaced 
in the direction opposite to the colloid displacement. Note, however, 
that the heat-of-transfer includes both single-particle as well as collec-

tive properties.

2.2. The force in terms of the colloid pressure

The determination of an (approximate) expression for the heat-of-

transfer, which will be discussed in the next subsection, requires an 
expression for the force in eq. (15) in terms of spatial gradients of the 
colloid pressure, which is the pressure due to the presence of the col-

loids. This alternative expression for the force is given in eq. (22).

Spatial variations of the total pressure 𝑝 vanish due to incompress-

ibility (see eq. (7) and it’s justification in Appendix A point (3)). It will 
be shown below that the pressure gradient that is relevant for the force 
on the colloids relates to the contribution 𝑝𝑐 of the colloids to the total 
pressure. This pressure will henceforth be referred to as the colloid pres-

sure. The colloid pressure 𝑝𝑐 should not be confused with the osmotic 
pressure Π, which is commonly determined from meniscus-height ex-

periments. As will be shown below, ∇𝑝𝑐 = ∇Π only for mass transport 
under isothermal conditions.

Starting point is the Gibbs-Duhem relation for the colloidal two-

component dispersion,

0 =
[
𝑠𝑠 𝜌𝑠 + 𝑠𝑐 𝜌𝑐

]
𝑑𝑇 + 𝜌𝑠 𝑑𝜇𝑠 + 𝜌𝑐 𝑑𝜇𝑐 − 𝑑𝑝 , (18)

where, as before, 𝑠𝑠,𝑐 are the partial molar entropies of the solvent and 
the colloids, respectively, 𝜌𝑠 = 𝑁𝑠∕𝑉 is the number concentration of 
460

solvent molecules, 𝜌𝑐 = 𝑁𝑐∕𝑉 that of the colloids, and 𝑝 is the pressure.
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On the basis of the virial theorem, it is shown in Appendix B that 
the total pressure 𝑝 can be expressed as,

𝑝 = 𝑝𝑐 + 𝑝𝑠 , (19)

with 𝑝𝑐 and 𝑝𝑠 the contributions to the pressure of the colloids and the 
solvent molecules, respectively. The colloid equation-of-state pressure 
𝑝𝑐 is the pressure of an effective single-component colloid system. Ex-

cluded volume interactions and short-ranged interactions (for example, 
those resulting from solvation layers and/or the presence of thin layers 
of grafted polymers) are accounted for in the colloid equation-of-state. 
In the derivation of eq. (19) it is used that only a negligible number of 
solvent molecules (residing within the colloid’s solvation layers) inter-

act with the colloids (see Appendix A point (4) where this is discussed 
in more detail). Similarly, 𝑝𝑠 is the equation-of-state pressure of pure 
solvent.

Using that 𝜌𝑠 𝑣𝑠 + 𝜌𝑐 𝑣𝑐 = 1, it is readily found that eq. (18) can be 
rewritten as,

0 = 1
𝑣𝑠

[
𝑠𝑠 𝑑𝑇 + 𝑑𝜇𝑠 − 𝑣𝑠 𝑑𝑝𝑠

]
+𝜌𝑐 𝑠𝑑𝑇 + 𝜌𝑐 𝑑𝜈 − 𝑑𝑝𝑐 . (20)

As elaborated in Appendix A point (5), the bulk solvent between the 
colloids is assumed to quasi-instantaneously equilibrate to the relatively 
slowly varying positions of the colloids. Therefore, the relation between 
𝑑𝑇 , 𝑑𝜇𝑠, and 𝑑𝑝𝑠 is given by the Gibbs-Duhem relation, according to 
which the first term in eq. (20) vanishes. It follows that,

0 = 𝜌𝑐 𝑠𝑑𝑇 + 𝜌𝑐 𝑑𝜈 − 𝑑𝑝𝑐 , (21)

which can be regarded as an effective one-component Gibbs-Duhem re-

lation for the colloids. The colloids thus behave like a one-component 
system with a partial molar entropy 𝑠, chemical potential 𝜈, and pres-

sure 𝑝𝑐 . According to eq. (21) there are only two independent intensive 
variables, so that 𝑠, 𝜈 and 𝑝𝑐 shall henceforth be regarded as functions 
of 𝜌𝑐 and 𝑇 .

As before, the infinitesimally small changes in the effective Gibbs-

Duhem relation (21) can be interpreted as the differences between 
adjacent volume elements, so that elimination of 𝑑𝜈 in favor of 𝑑𝑝𝑐

in eq. (15) leads to,

𝐅 = − 1
𝜌 𝑐

∇𝑝𝑐 −
𝑞⋆

𝑇
∇𝑇 . (22)

The first term on the right hand-side is the average mechanical force, 
experienced by the colloids, due to gradients in both the colloid concen-

tration and temperature (see Appendix C). The second term in eq. (22)

is a purely thermophoretic force (being proportional to ∇𝑇 ), which 
contains both single-particle forces as well as forces due to tempera-

ture dependent interactions between the colloids, as will be discussed 
in the next subsection. The latter interaction contribution to the ther-

mophoretic force has not been identified before, and requires a closure 
relation for the heat-of-transfer.

The first term on the right hand-side, with 𝑝𝑐 replaced by the os-

motic pressure, has been suggested before in Refs. [17,38–40]. Some 
care should be taken, however, by simply replacing 𝑝𝑐 by the ex-

perimentally measured osmotic pressure Π𝑒𝑥𝑝 obtained from meniscus 
height measurements. The connection between 𝑝𝑐 and Π𝑒𝑥𝑝 is as fol-

lows. Consider an osmotic equilibrium between the colloidal suspension 
and a reservoir of pure solvent, which are separated by a membrane 
that is only permeable for the solvent molecules. Let 𝑠0

𝑠
, 𝜇0

𝑠
, and 𝑝0

𝑠
de-

note the partial molar entropy, chemical potential, and pressure within 
the osmotic reservoir, respectively. For isothermal particle transport, it 
follows from the Gibbs-Duhem relations for the bulk solvent between 
the colloids (𝑑𝜇𝑠 = −𝑣𝑠 𝑑𝑝𝑠) and in the pure solvent in the osmotic 
reservoir (𝑑𝜇0

𝑠
= −𝑣𝑠 𝑑𝑝0

𝑠
), together with 𝑑𝜇𝑠 = 𝑑𝜇0

𝑠
, that 𝑑𝑝𝑠 = 𝑑𝑝0

𝑠
. 

In this case 𝑑𝑝𝑐 ≡ 𝑑Π𝑒𝑥𝑝, where Π𝑒𝑥𝑝 = 𝑝 − 𝑝0
𝑠

is the standard definition 
of the osmotic pressure, which is the experimental osmotic pressure 

as determined from meniscus-height measurements. For non-isothermal
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particle transport, 𝑑𝑝𝑠 ≠ 𝑑𝑝0
𝑠
, since in the respective Gibbs-Duhem re-

lations 𝑠𝑠 𝑑𝑇 ≠ 𝑠0
𝑠
𝑑𝑇 , and hence 𝑑𝑝𝑐 ≠ 𝑑Π𝑒𝑥𝑝. Since 𝑑𝑝𝑐 is only equal 

to 𝑑Π𝑒𝑥𝑝 for isothermal particle transport, contrary to non-isothermal 
transport, we will henceforth refer to 𝑝𝑐 as the colloid pressure.

Note that the effective partial molar entropy can be regarded as the 
partial molar entropy of the colloids with the constraint 𝑁𝑠 = (𝑉 −
𝑣𝑐𝑁𝑐)∕𝑣𝑠, since,

𝜕𝑆(𝑁𝑐,𝑁𝑠 = (𝑉 − 𝑣𝑐𝑁𝑐)∕𝑣𝑠, 𝑝, 𝑇 )
𝜕𝑁𝑐

= 𝑠(𝜌𝑐, 𝑇 ) . (23)

A similar consideration holds for the effective chemical potential 𝜈.

Also note that for a mono-component gas or compressible fluid, the 
so-called “thermomolecular pressure difference” Δ𝑃∕Δ𝑇 = −𝑞⋆∕(𝑣 𝑇 ), 
with Δ𝑃 the pressure difference in the stationary state induced by 
a temperature difference Δ𝑇 , and with 𝑣 = 1∕concentration (see 
eqs. (19)–(21) in chapter III of Ref. [35]). This result is formally re-

produced by eq. (22) (with 𝐅 = 𝟎 in the stationary state), but with 𝑃
replaced by 𝑝𝑐 . This confirms the earlier conclusion, that the colloids 
can formally be considered as a one-component system with pressure 
𝑝𝑐 .

2.3. An approximate expression for 𝑞⋆ and the resulting total force

As a last step to obtain an explicit expression for the force on a 
colloidal particle from eq. (22), in this subsection an approximate ex-

pression for the heat-of-transfer is derived, which is given in eq. (26). 
The heat-of-transfer contains a contribution for single colloids and a 
contribution due to the temperature dependence of the interactions be-

tween colloids. This leads to an expression for the total force given in 
eq. (31).

The heat flux consists of two distinct parts. There is a heat flux due to 
mere heat conduction, and there is a heat flux associated with particle 
transport. In obtaining an expression for 𝑞⋆, the force on a colloidal 
particle due to mere heat conduction will be neglected (which is further 
discussed in Appendix A point (6)).

Although we shall not need it to derive an expression for 𝑞⋆, a word 
on the distinction between mere heat conduction and heat transport as-

sociated with particle transport is in order. The heat flux 𝐉𝑐𝑜𝑛𝑑
𝑞

due to 
mere heat conduction is the heat flux in case 𝐉𝑐 = 𝟎, which implies that 
𝐅′

𝑐
= − 𝑞⋆ 𝐅𝑞 , so that 𝐉𝑐𝑜𝑛𝑑

𝑞
= (𝑞𝑞 − 𝑞⋆ 𝑞𝑐) 𝐅𝑞 . The heat flux 𝐉𝑐𝑜𝑙𝑙

𝑞
solely 

due to the transport of colloids is thus equal to 𝐉𝑐𝑜𝑙𝑙
𝑞

= 𝐉𝑞 − 𝐉𝑐𝑜𝑛𝑑
𝑞

= 𝑞⋆ 𝐉𝑐

(also when 𝑇 ≠ constant), which is in accordance with the earlier dis-

cussed physical meaning of 𝑞⋆ in otherwise isothermal systems, being 
equal to the amount of heat transported by a single colloidal particle.

Now consider two boxes of macroscopic extent, each with a constant 
volume, and each containing a colloidal dispersion of the same con-

centration, in internal equilibrium. The case of constant pressure will 
be briefly discussed below. Both boxes are thermally isolated, where 
the temperature of the left box at position 𝑧 (hereafter referred to as 
“box I”) is 𝑇 , and the box on the right (“box II”) at position 𝑧 + 𝛿𝑧 has 
temperature 𝑇 + 𝛿𝑇 , where 𝛿𝑇 is (infinitesimally) small compared to 
the ambient temperature 𝑇 . The thermal isolation of the two boxes pre-

vents mere heat conduction, and fixes the temperature gradient 𝛿𝑇 ∕𝛿𝑧. 
Pulling a single colloidal particle quasi-statically from box I to box II, 
changes the internal energy 𝑢 of the combined system of the two boxes 
by 𝛿𝑢 = − Δ𝐹𝑇 𝛿𝑧, where Δ𝐹𝑇 is the thermophoretic force. A change 
of the temperature of both boxes, as a result of the work performed, 
can be neglected, since the colloidal particle under consideration is em-

bedded in an arbitrary large amount of suspension. The contribution to 
the thermophoretic force due to work against the pressure 𝑝𝑐 experi-

enced by the colloids is already accounted for by the first term on the 
right hand-side in eq. (22) for the total force, and should therefore not 
be included in 𝛿𝑢 to obtain an expression for the second term ∼ ∇𝑇 in 
eq. (22) (hence the notation Δ𝐹𝑇 ). The remaining contribution to 𝛿𝑢 is 
therefore the difference in the internal energy of a single colloidal par-
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ticle at 𝑇 + 𝛿𝑇 and 𝑇 . Recall, that the internal energy contains both 
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single-particle as well as collective contributions. The additional ther-

mophoretic force Δ𝐅𝑇 is thus equal to,

Δ𝐅𝑇 ≡ − 𝑞⋆

𝑇
∇𝑇 = − 𝜕𝑢

𝜕𝑇
∇𝑇 , (24)

where now 𝑢 is understood to be equal to the thermodynamic internal 
energy carried by a single colloidal particle.

Since only a negligible number of solvent molecules interact directly 
with the colloids, as discussed in Appendix A point (4), the internal en-

ergy of the suspension can be written as a sum two single-component 
internal energies 𝑈 = 𝑈𝑐 +𝑈𝑠 of the colloids 𝑈𝑐 and solvent molecules 
𝑈𝑠. On the other hand, 𝑈 = 𝑁 𝑢𝑐 +𝑁𝑠 𝑢𝑠, with 𝑢𝑐 and 𝑢𝑠 the partial mo-

lar internal energies of the colloids and solvent molecules, respectively 
(defined similarly as the previous partial molar quantities). It follows 
that 𝑢𝑐 and 𝑢𝑠 are nothing but the single-particle internal energies, so 
that 𝑢 is nothing but the “effective partial molar internal energy”,

𝑢 = 𝑢𝑐 −
𝑣𝑐

𝑣𝑠

𝑢𝑠 , (25)

where, as before, the second term accounts for the opposite dis-

placement of solvent. From 𝜕𝑢∕𝜕𝑇 = 𝑇 𝜕𝑠∕𝜕𝑇 , it thus follows from 
eqs. (24), (25) that,

𝑞⋆ = 𝑇
𝜕𝑢(𝜌𝑐, 𝑇 )

𝜕𝑇
= 𝑇 2 𝜕𝑠(𝜌𝑐, 𝑇 )

𝜕𝑇
. (26)

There are two contributions to the temperature dependence of the 
internal energy 𝑢 carried by a single colloidal particle. There is (i) a 
contribution due to the internal energy resulting from interactions with 
neighboring colloidal particles, and (ii) a single-particle contribution, 
related to the thermal properties of the core of a colloidal particle (and 
more generally to the presence of an electric double layer, a hydration 
layer, and a polymer brush grafted to the surfaces of the colloidal par-

ticle, as mentioned before). The interest in the present paper is in the 
former colloid-colloid interaction contribution.

For the colloid-colloid interaction contribution we write,

Δ𝐅𝑖𝑛𝑡
𝑇

= −𝑓𝑖𝑛𝑡(𝑇 )∇𝑇 , (27)

with,

𝑓𝑖𝑛𝑡 =
𝜕 𝑢𝑖𝑛𝑡(𝜌𝑐, 𝑇 )

𝜕𝑇
, (28)

where 𝑢𝑖𝑛𝑡 is the interaction energy of a single colloidal particle with its 
neighbors, which will be specified explicitly in the next section in terms 
of the colloid-colloid interaction potential. We shall henceforth refer to 
this force as the thermophoretic interaction force.

As mentioned earlier, single-particle contributions are quite spe-

cific for different types of colloidal particles. The single-particle ther-

mophoretic force Δ𝐹
𝑠𝑖𝑛𝑔𝑙𝑒

𝑇
will not be specified here, and will be simply 

denoted, similarly to eq. (28) for the thermophoretic interaction force, 
as,

Δ𝐅𝑠𝑖𝑛𝑔𝑙𝑒

𝑇
= −𝑓𝑠𝑖𝑛𝑔𝑙𝑒(𝑇 )∇𝑇 , (29)

with,

𝑓𝑠𝑖𝑛𝑔𝑙𝑒 =
𝜕𝑢𝑠𝑖𝑛𝑔𝑙𝑒

𝜕 𝑇
, (30)

where the internal energy 𝑢𝑠𝑖𝑛𝑔𝑙𝑒 corresponding to the degrees of free-

dom of a single colloid is understood to include the opposite displace-

ment of a volume 𝑣𝑐 of solvent. Here, the value of 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 is determined 
from experimental thermophoretic data extrapolated to zero concentra-

tion. In addition to thermodynamic contributions, there are in general 
additional contributions to 𝑓𝑠𝑖𝑛𝑔𝑙𝑒, that can not be described on the ba-

sis of thermodynamics alone [20,32,35,41,42]. For charged colloids, 
for example, the temperature-gradient induces deformation of the elec-

tric double layer as well as electro-osmotic solvent flow, both of which 
contribute to the single-particle thermophoretic force. For experiments 

under constant pressure, the internal energy should be replaced by the 
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enthalpy, leading to an additional contribution to the single-particle 
force due to pV-work, that is due to the difference between the thermal 
expansion coefficients of pure solvent and the core of the colloids.

It is thus finally found that,

𝐅 = − 1
𝜌 𝑐

𝜕𝑝𝑐

𝜕𝜌𝑐

∇𝜌𝑐

−
[
1
𝜌 𝑐

𝜕𝑝𝑐

𝜕𝑇
+ 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 + 𝑓𝑖𝑛𝑡

]
∇𝑇 , (31)

where 𝑝𝑐 and 𝑓𝑖𝑛𝑡 are functions of 𝜌𝑐 and 𝑇 . Microscopic expressions for 
𝑝𝑐 and 𝑓𝑖𝑛𝑡 are discussed in the next section, which allow for a detailed 
comparison of the prediction for the force in eq. (31) to experimental 
results in sections 4 and 5. There is an additional force −∇ (Δ𝑚𝐠 ⋅ 𝐫)
due to gravity that should be added to the total force 𝐅 in case such 
forces are relevant (see the comments in Appendix A point (1)).

The colloid-colloid interaction energy 𝑢𝑖𝑛𝑡 includes both excluded 
volume interactions, and for example, interactions mediated by the sol-

vation layers and/or a thin layer of grafted polymers. The latter is the 
case for the experimental system to which the theory will be applied, 
leading to temperature dependent attractive interactions. The relation 
𝑈⋆ = 𝜈 that is assumed in Refs. [28,29] corresponds to 𝑞⋆ = −𝑇 𝑠 (note 
that in these references the quantity 𝑞, in their notation, corresponds 
to −𝑈⋆ according to the proposed nomenclature in Ref. [35], which 
we adopted here). According to eq. (15) this leads to 𝐅 = −∇𝜈, and 
leads to a Soret coefficient that contains derivatives of 𝜈 instead of 
𝑝𝑐 . In Refs. [25–27], the driving force for colloid transport is solely 
attributed to the temperature and concentration dependence of the in-

teraction energy of the colloids (denoted here as 𝑢𝑖𝑛𝑡), which implies 
that 𝐅 ∼ (𝜕𝑢𝑖𝑛𝑡∕𝜕𝜌𝑐) ∇𝜌𝑐 + (𝜕𝑢𝑖𝑛𝑡∕𝜕𝑇 ) ∇𝑇 , and leads to a Soret coeffi-

cient that solely contains derivatives of 𝑢𝑖𝑛𝑡. These predictions are at 
odds with eqs. (27), (28), (31), and in particular lead to expressions for 
the Soret coefficient that fundamentally differ from that found in the 
present paper (see section 4).

3. Microscopic expressions for the colloid pressure and 
thermophoretic interaction force

So far no assumption has been made concerning the geometry of the 
colloidal particles. The expression for the force in eq. (31) is equally 
valid for, for example, rod-like and spherical colloids. The microscopic 
expressions discussed below are restricted to spherical colloids.

The colloid pressure 𝑝𝑐 in terms of the equilibrium colloid-colloid 
pair-correlation function 𝑔𝑒𝑞 , assuming pair-wise additivity of the total 
interaction potential, reads [43] (see also Appendix B),

𝑝𝑐(𝜌𝑐, 𝑇 ) = 𝜌𝑐 𝑘𝐵𝑇 − 2𝜋
3

𝜌2
𝑐

∞

∫
0

𝑑𝑅 𝑅3 𝑔𝑒𝑞(𝑅) 𝑑𝑉 (𝑅)
𝑑𝑅

, (32)

where 𝑅 is the distance between two colloidal particles, and 𝑉 (𝑅) is 
the pair-interaction potential. The use of the equilibrium pair-correlation 
function is justified by the irreversible-thermodynamics assumption that 
each volume element is in internal equilibrium. Note that the pair-

correlation function 𝑔𝑒𝑞 is a function of the local concentration 𝜌𝑐 , while 
it is also depends on the local temperature in case the pair-interaction 
potential 𝑉 is temperature dependent.

The internal interaction energy of a single colloidal particle 𝑢𝑖𝑛𝑡 in 
eq. (28) due to interactions with the remaining colloids is equal to 
(again assuming pair-wise additivity of the total interaction potential),

𝑢𝑖𝑛𝑡 = 1
𝑁𝑐

𝑁𝑐∑
𝑖>𝑗

< 𝑉 (|𝐫𝑖 − 𝐫𝑗 |) > , (33)

where < ⋅ > denotes the ensemble average with respect to the colloidal 
particle’s position coordinates {𝐫𝑗 ∣ 𝑗 = 1, ⋯ , 𝑁𝑐}. The prefactor 1∕𝑁𝑐

accounts for the fact that the interest is in the average interaction en-
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ergy of a single colloid. Just as for the colloid pressure in eq. (32), 
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the ensemble average is evaluated at the local concentration and tem-

perature. Expressing the average in terms of an integral over the pair-

correlation function, the amplitude of the thermophoretic interaction 
force is found to be equal to (see eq. (28)),

𝑓𝑖𝑛𝑡 = 2𝜋𝜌𝑐

𝜕

𝜕𝑇

∞

∫
0

𝑑𝑅 𝑅2 𝑔𝑒𝑞(𝑅)𝑉 (𝑅) . (34)

As for the colloid pressure, 𝑔𝑒𝑞 is the equilibrium pair-correlation func-

tion for an otherwise isothermal and homogeneous system at the local 
density and temperature.

4. The Soret coefficient and comparison with experiments

In a closed system, like thermal cells with boundary heating and 
cooling, and in Thermo Diffusion Forced Rayleigh Scattering (TDFRS) 
experiments [44,45], the flux of colloidal particles vanishes in the sta-

tionary state, which implies that the total force on the colloidal particles 
vanishes. It thus follows from eq. (31) with gradients along the 𝑧-

direction that the Soret coefficient as defined in eq. (2) is equal to,

𝑆𝑇 =
[
1
𝜌𝑐

𝜕𝑝𝑐

𝜕𝑇
+ 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 + 𝑓𝑖𝑛𝑡

]/ 𝜕𝑝𝑐

𝜕𝜌𝑐

, (35)

where the gradients refer to those in the stationary state. In the follow-

ing subsection, the colloidal system used in the experiments in Ref. [24]

is described, together with the theoretical model for the pair-correlation 
function for sticky hard spheres. This model is then used to calculate the 
various contributions to the Soret coefficient based on eqs. (32), (34). 
The model calculation is then compared in subsection 4.2 with the ex-

perimental results from Ref. [24].

4.1. System and model

The experimental data from Ref. [24] with which the theory will 
be compared are obtained by means of Thermo Diffusion Forced 
Rayleigh Scattering (TDFRS). Here, two 488 nm argon laser beams are 
crossed, leading to a standing interference pattern with a wavelength of 
(10–20) μm. A small amount of dye is added to the sample at low con-

centrations, which absorbs the 488 nm light, giving rise to a sinusoidal 
temperature profile with an amplitude of approximately 20 μK. Due to 
the difference in refractive index of the colloids and the solvent, ther-

modiffusion gives rise to a sinusoidally varying refractive index grating. 
The time-resolved Bragg-scattered intensity of a 632.8 nm krypton laser 
beam from this refractive index grating is then connected to the ampli-

tude of the sinusoidally varying colloid concentration, and hence to the 
Soret coefficient and thermodiffusion coefficient. More information can 
be found in Refs. [24,44,45].

The system used in the experiments in Ref. [24] consists of silica 
colloids, the surfaces of which are chemically grafted with a brush of 
octadecyl alcohol (also referred to as stearyl alcohol). The solvent is 
toluene, which is a good solvent for octadecyl alcohol for temperatures 
larger than about 45 ◦C, in which cases the colloidal particles behave 
as hard spheres. At lower temperatures, the thickness of the octade-

cyl alcohol brush diminishes due to the decreasing quality of toluene 
as a solvent for octadecyl alcohol, in order to increase the number of 
octadecyl alcohol contacts within the brushes in favor of the octadecyl 
alcohol/toluene contacts. The energetically favorable octadecyl/octade-

cyl contacts and the diminished importance of entropic contributions to 
the Helmholtz free energy of overlapping polymer brushes at lower tem-

peratures lead to short-ranged attractive interactions between the col-

loids. The strength of the attractive interactions increases upon lower-

ing the temperature. The temperature dependence of that contribution 
to the total interaction potential leads to a significant, non-negligible 
contribution to the Soret coefficient through the newly introduced ther-
mophoretic interaction force, as shown in Fig. 2.
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We note that for n-dodecane as a solvent an abrupt change in the 
colloid-colloid interactions is observed as a function of temperature 
[47]. This is attributed to a transition where grafted linear octade-

cyl alcohol molecules at the colloid’s surfaces and the similarly linear 
n-dodecane solvent molecules interpenetrate and form an ordered, so-

lidified structure around the colloids [47]. For benzene as a solvent, 
which has a non-linear plate-like geometry, a gradual change of the in-

teraction potential is observed [47,48]. In Ref. [24], a similar gradual 
change with temperature is observed with toluene as a solvent, which 
has a similar non-linear plate-like geometry like benzene.

The silica particles have a number-averaged radius of 𝑎 = (15.0 ±
1.0) nm, with a size distribution corresponding to a standard deviation 
𝜎 equal to 𝜎2 = (0.054 ±0.07) ×𝑎2 [24]. The volume fraction 𝜑 in a theo-

retical approach for mono-disperse systems is obtained from the number 
concentration 𝜌𝑐 as 𝜑 = (4𝜋∕3) 𝑎3 𝜌𝑐 . The experimental volume fraction 
𝜑𝑒𝑥𝑝 as obtained by weighing is equal to 𝜑𝑒𝑥𝑝 = 𝜑 

[
1 + 3(𝜎2∕𝑎2)

]
, up 

to leading order in 𝜎∕𝑎, where 𝜑 is the volume fraction as obtained 
from the number-averaged radius 𝑎 of the colloidal particles. The ex-

perimental volume fractions should therefore be reduced by a factor [
1 + 3(𝜎2∕𝑎2)

]−1 = 0.86 when comparing with theory.

The experimental system described above is an example of sticky 
hard-spheres (or alternatively, adhesive hard-spheres). The pair-inter-

action potential for such particles can be approximated by a square-well 
potential,

𝑉 (𝑅) =∞ 𝑅 < 2𝑎

= 𝑈0 2𝑎 <𝑅 < 2𝑎+Δ

= 0 2𝑎+Δ <𝑅 , (36)

where 2𝑎 is the hard-core diameter of the colloids, and Δ and 𝑈0 < 0
are the width and depth of the attractive potential, respectively. The 
nomenclature “sticky spheres” stems from the fact that 𝜖 =Δ∕2𝑎 attains 
very small values. The colloid pressure and pair-correlation function for 
such systems, on the basis of the Ornstein-Zernike equation in Percus-

Yevick approximation, has been discussed by Baxter in Ref. [49], with 
the special choice 𝑈0 = 𝑘𝐵𝑇 ln {12 𝜏 𝜖}, where 𝜏 is referred to as the 
“stickiness parameter”. This choice for 𝑈0 leads, however, to an expres-

sion for the interaction energy that diverges as 𝜖 =Δ∕2𝑎 ↓ 0 for a given 
finite value of 𝜏 . This apparent inconsistency is resolved by using 𝑈0
as an independent parameter instead of 𝜏 . From the above expression 
for Baxter’s 𝑈0 it follows that 𝜏 = (1∕12 𝜖) exp{𝑈0∕𝑘𝐵𝑇 }, which shows 
that a finite 𝜏 in the limit where 𝜖 ↓ 0 requires the simultaneous limit 
of 𝑈0 ↓ −∞. Menon et al. extended Baxter’s approach that applies to 
the pair-potential in eq. (36) where both Δ∕2𝑎 and 𝑈0 are independent 
variables, reproducing the above expression for 𝜏 , and in addition show-

ing that 𝜂 (with 𝜂 in Baxter’s notation the hard-core volume fraction) 
should be interpreted as 𝜂 = 𝜑 (1 + 3 𝜖) with 𝜑 the hard-core volume 
fraction, up to leading order in 𝜖 [50]. These expressions for 𝜏 and 
Δ∕2𝑎 are to be used in eq. (32) in Ref. [49] for the colloid pressure and 
eqs. (5), (10) for the pair-correlation function. The pressure (either ob-

tained from the compressibility equation or the virial equation) and the 
pair-correlation function predicted by Baxter have been shown by com-

puter simulations to be quite accurate, at least up to volume fractions 
of 0.3 [51]. The amplitude 𝑓𝑖𝑛𝑡 of the thermophoretic interaction force 
is obtained from eq. (34) above and eq. (10b) for the pair-correlation 
function in Ref. [49], together with the expression of Menon et al. for 
the stickiness parameter [50], leading to,

𝑓𝑖𝑛𝑡 = 𝜑
𝜕

𝜕𝑇

[
𝜆𝑈0

]
. (37)

Here, 𝜆 is related to 𝜏 and 𝜂 as the smallest solution of the quadratic 
equation (21) in Ref. [49].

4.2. Results

In this subsection we compare the experimental data taken from 
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Ref. [24] for the Soret coefficient as a function of concentration for var-
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ious ambient temperatures to the theory. It will in particular be shown 
that the new thermophoretic interaction force introduced in this paper 
is essential to describe the experimental data.

As shown in Appendix D, the experimental Soret coefficients 𝑆𝑒𝑥𝑝

𝑇
as 

defined in Ref. [24] and as defined in the present paper are connected 
as,

𝑆
𝑒𝑥𝑝

𝑇
= 1

1 −𝜑
𝑆𝑇 . (38)

Comparing the theoretical predictions in eqs. (32), (35), (37) to the 
experimental data for the Soret coefficient in Ref. [24] as a function 
of concentration and temperature, there are three adjustable param-

eters: 𝑓𝑠𝑖𝑛𝑔𝑙𝑒, 𝜖 = Δ∕2𝑎, and 𝑈0. The amplitude of the single-particle 
force 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 determines the intercept at zero concentration for each 
temperature. For each separate temperature, both 𝑑𝜖∕𝑑𝑇 and 𝑑𝑈0∕𝑑𝑇

are additional independent fit variables. After a fit for the five dif-

ferent temperatures, the temperature dependence of 𝜖 and 𝑈0 should 
be in accordance with the numerical values obtained for 𝑑𝜖∕𝑑𝑇 and 
𝑑𝑈0∕𝑑𝑇 , respectively. Such a correspondence is obtained by iteration. 
Fig. 1 shows the experimental data taken from Ref. [24] as a function of 
concentration for various temperatures, and the thus obtained fits (the 
solid lines). A similar decrease of the Soret coefficient with increasing 
concentration for essentially hard-core colloids [13] and sticky-spheres 
[46] has also been found by simulations.

For the highest temperature of 50 ◦C the solid line in the upper 
panel in Fig. 1 corresponds to the theory for hard-spheres, without 
any attractions between the colloids. In this case there is only a single 
fitting parameter, which is the amplitude 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 of the single-particle 
thermophoretic force, which merely determines the intercept at zero 
concentration. As can be seen, the predicted concentration dependence 
of the Soret coefficient is in good agreement with the experiments. At-

tractions come into play upon lowering the temperature, where a fit ac-

cording to Baxter-Menon as described above is essential. Moreover, the 
contribution from the novel thermophoretic interaction force in eq. (37)

becomes essential. In particular, when the single-particle contribution 
𝑓𝑠𝑖𝑛𝑔𝑙𝑒 becomes negative, a monotonically increasing Soret coefficient 
is found when the thermophoretic interaction force in eqs. (27), (28)

is neglected. The experimental data for attractive interactions can not 
be explained on the basis of the force due to gradients in the osmotic 
pressure in eq. (31) alone. Fig. 2 shows the importance of the ther-

mophoretic interaction force (the solid curves) against the temperature-

gradient induced osmotic contribution (the striped curves). For 50 ◦C, 
𝑓𝑖𝑛𝑡 = 0, while for decreasing temperature the thermophoretic interac-

tion forces become dominant over the osmotic contribution.

The fitting results for 𝜖 = Δ∕2𝑎, 𝑈0 and the stickiness parameter 𝜏
are given in Figs. 3, 4, and 5, respectively.

For the hard-sphere interaction potential at 50 ◦C (and higher tem-

peratures), we have 𝑈0 = 0, 𝑑𝑈0∕𝑑𝑇 = 0, and 𝑑𝜖∕𝑑𝑇 = 0, while the 
value for 𝜖, and hence for 𝜏 = 1∕(12 𝜖), can not be obtained from the fit. 
Since at 50 ◦C (and higher temperatures) the octadecyl alcohol chains 
are stretched, an estimate of Δ can be obtained as follows. From the 
carbon-carbon and carbon-oxide bond-lengths and bond-angles it is 
found that the contour length of octadecyl alcohol CH3(CH2)17OH is 
equal to 𝐿 = 2.3 nm. Reported persistence lengths of octadecyl alcohol 
are in the range of 𝑙𝑝 = 0.6–0.8 nm [52–54]. From,

Δ=

𝐿

∫
0

𝑑𝑠 𝐮̂(0) ⋅ 𝐮̂(𝑠) =
𝐿

∫
0

𝑑𝑠 exp
{
−𝐿∕𝑙𝑝

}
= 𝑙𝑝

[
1 − exp

{
−𝐿∕𝑙𝑝

}]
, (39)

where it is used that the segment orientation 𝐮̂(𝑠) at the grafting point 
𝑠 = 0 is perpendicular to the colloid’s particle surface, it is thus found 
that Δ = 0.58–0.75 nm. This brush thickness at 50 ◦C corresponds to 𝜖 =
Δ∕2𝑎 = 0.020–0.025 and 𝜏 = 1∕(12 𝜖) = 3.32–4.27. The thus obtained 

data points are represented by ⊙ in Figs. 3, 4, and 5. As can be seen, 
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Fig. 1. Experimental results for 𝑇 ×𝑆
𝑒𝑥𝑝

𝑇
as a function of the volume fraction for 

different temperatures (from top to bottom, 50, 40, 30, 20, and 15 ◦C). The solid 
curves are fits, using the Baxter-Menon colloid pressure and pair-correlation 
function. The volume fractions are corrected for polydispersity, as mentioned 
in subsection 4.1. The experimental data are taken from Ref. [24]. Courtesy of 
Prof. S. Wiegand.

these data points are in accordance with the data obtained at lower 
temperatures (the corresponding dashed lines in Figs. 3 and 5 represent 
extrapolations by eye). Phase separation occurs at 𝑇 = 3 ◦C [24] and 
for 𝜏 = 0.1 [51], which point is shown by the symbol ⊙ in the left 
lower part of Fig. 5. Again, this additional data point is in line with the 
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extrapolated data by eye obtained from the thermodiffusion data.
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Fig. 2. A comparison of the amplitudes of the thermophoretic interaction force 
𝑓𝑖𝑛𝑡∕𝑘𝐵 (solid curves) and the force (1∕𝑘𝐵𝜌𝑐 ) 𝜕𝑝𝑐∕𝜕𝑇 (the dashed curves) due 
to the temperature dependence of the colloid pressure, as a function of con-

centration for different temperatures, as indicated in the various panels. For 
50 ◦C, 𝑓𝑖𝑛𝑡∕𝑘𝐵 = 0. All plots are given on the same scale, to compare variations 
between the different temperatures.

Fig. 6 shows the temperature dependence of the single-particle am-

plitude 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 in eq. (29). As can be seen, 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 increases with increas-

ing temperature, which implies an increasing tendency to migrate to 
regions of lower temperature with increasing solvent quality. The in-

crease of 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 with increasing quality of the solvent is also seen in 
simulations [13]. A (semi-)quantitative interpretation of the tempera-

ture dependence of 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 requires an analysis that is beyond the scope 
of the present paper.

5. The thermodiffusion coefficient and comparison with 
experiments

According to eq. (1) for the flux,

𝜕𝜌𝑐(𝐫, 𝑡)
𝜕𝑡

= −∇ ⋅ 𝐉𝑐 =∇ ⋅
[
𝐷𝑐 ∇𝜌𝑐 +𝐷𝑇 ∇𝑇

]
, (40)

together with eqs. (14), (31), the collective diffusion coefficient and the 
thermodiffusion coefficient are equal to,

𝐷𝑐 =𝑐𝑐

1
𝜌𝑐

𝜕𝑝𝑐

𝜕𝜌𝑐

,[
1 𝜕𝑝𝑐

]

𝐷𝑇 =𝑐𝑐

𝜌𝑐 𝜕𝑇
+ 𝑓𝑠𝑖𝑛𝑔𝑙𝑒 + 𝑓𝑖𝑛𝑡 . (41)
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Fig. 3. 𝜖 = Δ∕2𝑎 as a function of temperature. The short red lines indicate the 
slopes obtained from the fits. The point at 50 ◦C for hard-spheres is obtained 
from the estimated linear extent of octadecyl alcohol in a good solvent. The 
solid curve is a guide-to-the-eye, the dashed line is an extrapolation by eye to 
the estimated point at 50 ◦C.

Fig. 4. The depth of the square-well potential as a function of temperature. 
The short red lines indicate the slopes obtained from the fits. The solid curve 
is a guide-to-the-eye. The dashed line is the zero-line, above which the colloids 
behave as hard spheres.

Fig. 5. The stickiness parameter 𝜏 as a function of temperature. The point at 
50 ◦C is obtained from the estimated linear extent of octadecyl alcohol in a good 
solvent. The point at the lowest temperature corresponds to the temperature 
and 𝜏 where phase separation sets in [24,51]. The solid curve is a guide-to-the-

eye, the dashed lines are extrapolations by eye to the estimated points at 3 and 
50 ◦C.

These expressions describe long-time diffusive processes. However, as 
is well-known, the zero-wavevector limit of the short-time collective 
diffusion coefficient differs only by a few percent from the long-time 
diffusion coefficient [55–57]. We can therefore rely on literature on 
short-time collective diffusion for 𝐷𝑐 in the zero-wavevector limit [58–

60]. Within this approximation we find,
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𝑐𝑐 = 𝐷0 𝜌𝑐 𝛽 𝐻0 , (42)
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Fig. 6. The single-particle thermophoretic force 𝑓𝑠𝑖𝑛𝑔𝑙𝑒∕𝑘𝐵 as a function of tem-

perature. The solid curve is a guide-to-the-eye.

where 𝐷0 = 𝑘𝐵𝑇 ∕6𝜋𝜂𝑠𝑎 is the Stokes-Einstein-Sutherland free diffu-

sion coefficient (with 𝜂𝑠 the shear-viscosity of the solvent), where 
𝛽 = 1∕𝑘𝐵𝑇 , and where the hydrodynamic mobility function is equal to 
(with ̂𝐤 = 𝐤∕𝑘),

𝐻0 =
1

𝑁𝑐

lim
𝑘→0

⟨
𝑁𝑐∑

𝑖,𝑗=1

(
𝐤̂ ⋅

𝐃𝑖𝑗

𝐷0
⋅ 𝐤̂

)
exp

{
𝑖𝐤 ⋅

[
𝐫𝑖 − 𝐫𝑗

]}⟩
0

. (43)

Here, < ⋅ >0 denotes the equilibrium average with respect to the posi-

tion coordinates {𝐫𝑖 ∣ 𝑖 = 1, 2, ⋯ 𝑁𝑐} of the colloids, while the tensors 
𝐃𝑖𝑗 specify the hydrodynamic interactions between the colloids. Note 
that 𝐻0 is a function of 𝜌𝑐 and 𝑇 through the probability density func-

tion with respect to which the average < ⋅ >0 in eq. (43) is taken.

Unfortunately, there is no accurate analytical expression for 𝐻0 for 
adhesive hard-sphere systems, so that a comparison with the data in 
Ref. [24] is only possible for the highest temperature. A good approxi-

mation for 𝐻0 for stick boundary conditions up to high volume fractions 
for colloids which solely interact through excluded volume interactions 
reads [61],

𝐻0 = 1 − 6.55𝜑

×
[
1 − 3.35𝜑+ 7.43𝜑2 − 10.03𝜑3 + 5.88𝜑4

]
. (44)

The concentration dependence of the thermodiffusion coefficient 
𝐷

𝑒𝑥𝑝

𝑇
as obtained experimentally in Ref. [24] is related to the theoretical 

𝐷𝑇 as defined in the present paper as (see Appendix D),

𝐷
𝑒𝑥𝑝

𝑇
= 1

𝜌𝑐 (1 −𝜑)
𝐷𝑇 . (45)

Furthermore, the collective diffusion coefficient 𝐷𝑒𝑥𝑝

0 at infinite dilution 
as measured by light scattering is related to the monodisperse diffu-

sion coefficient 𝐷0(𝑎̄) for particles with the number average radius 𝑎̄
as 𝐷𝑒𝑥𝑝

0 = 𝐷0(𝑎̄) [1 − 5(𝜎2∕𝑎̄2)] = 0.73 × 𝐷0(𝑎̄) (see subsection 4.1). In 
comparing the experiments with theory, the ratio 𝐷0∕𝐷

𝑒𝑥𝑝

0 is therefore 
taken equal to 1∕0.73 in order to correct for polydispersity.

The thus obtained comparison with experimental results for 𝑇 ×
𝐷

𝑒𝑥𝑝

𝑇
∕𝐷𝑒𝑥𝑝

0 is shown in Fig. 7 for 50 ◦C, corresponding to hard spheres. 
The solid curve corresponds to the theory, where the parameters from 
the fit of the Soret coefficients in Fig. 1 has been used without any fur-

ther fitting parameters. To within the quite large experimental errors, 
there is agreement between the experiments and theory.

6. Fokker-Planck approaches

There are a number of studies [62–68] aimed at the derivation of 
Fokker-Planck equations for the probability density function (pdf) of the 
phase-space coordinates of spherical colloidal particles in the presence 
of a temperature gradient. Integration of the Fokker-Planck equation 

that includes both the position coordinates and velocities of the colloids 
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Fig. 7. Experimental results for 𝑇 × 𝐷
𝑒𝑥𝑝

𝑇
∕𝐷

𝑒𝑥𝑝

0 as a function of the volume 
fraction for 50 ◦C). The solid curve corresponds to the theoretical prediction, 
without any fitting parameters.

with respect to the relatively fast velocities leads to a Fokker-Planck 
equation for the pdf of the position coordinates only, which is com-

monly referred to as a Smoluchowski equation. Subsequent integration 
of the Smoluchowski equation with respect to all position coordinates, 
except for one, in principle leads to an equation of motion for the col-

loid concentration, and hence to expressions for the collective diffusion 
and thermodiffusion coefficients.

Specific interactions between a colloid and the surrounding sol-

vent molecules have been included in a single-particle Fokker-Planck 
equation in Ref. [62]. The resulting single-particle thermodiffusion co-

efficient is stated to be proportional to the “heat drag coefficient” which 
is equal to a time-integral over a correlation function, for which, how-

ever, no explicit expression is given. The thermophoretic contribution 
from the ideal colloid pressure 𝑝𝑐 = 𝜌𝑐 𝑘𝐵𝑇 for non-interacting col-

loids has been found here as well, which has also been discussed in 
Refs. [63,64] without considering further specific interactions with sol-

vent molecules. A combination of statistical mechanical and kinetic 
methods, as well as irreversible thermodynamics for a single colloid is 
discussed in Ref. [65], where a Fokker-Planck equation is derived that 
essentially reproduces the results in Ref. [62]. A similar approach is sub-

sequently used in Ref. [66] to include interactions between the colloids, 
which are characterized by two variables: the “thermal acceleration co-

efficient” and the “friction coefficient”. Both variables are related to 
unspecified Onsager coefficients. A Fokker-Planck equation and accom-

panied hydrodynamic equations of motion are derived in Refs. [67,68]

where various contributions are formulated in terms of local thermal av-

erages and correlation functions which would require further analysis 
in order to obtain the thermodiffusion coefficient in terms of the local 
temperature and colloid concentration. A Smoluchowski equation that 
is applicable to non-isothermal systems, which contains only known 
phase functions without unspecified coefficients, has not been derived 
so far.

An extension of the well-known Smoluchowski equation for an equi-

librium 𝑁𝑉 𝑇 -system [59,60,69–75] to account for the presence of an 
externally imposed temperature gradient up to linear order can be ob-

tained by simply adding the purely thermophoretic forces as obtained 
in subsection 2.3 to the existing forces in the 𝑁𝑉 𝑇 -system without a 
temperature gradient. This leads to (here is understood that 𝑁 = 𝑁𝑐 is 
the total number of colloids),

𝜕

𝜕 𝑡
𝑃𝑁 =

𝑁∑
𝑖,𝑗=1

∇𝑖 ⋅
[
𝛽𝐃𝑖𝑗

]
⋅
[
𝑘𝐵 𝑇𝑗 ∇𝑗 𝑃𝑁 + 𝑃𝑁 ∇𝑗Ψ

+
{

𝑃𝑁

[
𝑘𝐵 + 𝑓𝑠𝑖𝑛𝑔𝑙𝑒(𝑇𝑗 )

]
+ 𝜕

𝜕𝑇

(
𝑃𝑁

Ψ
𝑁

)}
∇𝑗𝑇𝑗

]
, (46)

where 𝑃𝑁 is the pdf for the position coordinates of the assembly of 
𝑁 colloids, the tensors 𝐃𝑖𝑗 account for the hydrodynamic interactions 
between the colloids (the same tensors appear in eq. (43)), which are 
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functions of all the position coordinates, and Ψ is the total interaction 
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energy due to colloid-colloid interactions. Furthermore, ∇𝑗 is the gra-

dient operator with respect to the position coordinate 𝐫𝑗 of the 𝑗𝑡ℎ

colloidal particle, and 𝑇𝑗 = 𝑇 (𝐫𝑗 ). The newly suggested force in the 
above Smoluchowski equation is the thermophoretic interaction force 
∼ 𝜕(𝑃𝑁 Ψ∕𝑁)∕𝜕𝑇 .

The equation of motion (40), (41) for the colloid concentration 
can be obtained by integration of the above Smoluchowski equation, 
again assuming pair-wise additivity of the total interaction potential, 
and pre-averaging of the hydrodynamic tensors, that is, employing the 
approximation,

𝛽𝐃𝑖𝑗 ≈ 𝛿𝑖𝑗 𝐈̂𝑀(𝜌𝑐(𝐫𝑖, 𝑡), 𝑇 (𝐫𝑖)) , (47)

where 𝛿𝑖𝑗 is the Kronecker delta and 𝐈̂ is the identity tensor. The 𝜌
and 𝑇 dependence of the function M requires additional considerations, 
and will be specified below. The intuition behind hydrodynamic pre-

averaging is that hydrodynamic interactions are long-ranged, so that 
many colloids interact simultaneously with each given colloid. Upon 
integration, the resulting integral over the direct interaction force ∼
𝑃𝑁 ∇𝑗Ψ in eq. (46) can be expanded to leading order in gradients of the 
colloid concentration and temperature (mathematical details are given 
in Appendix C). Subsequently, the same reasoning in section 5 to arrive 
at eq. (42) for the mobility can be employed to show that 𝑀 = 𝐷0 𝛽 𝐻0.

7. Summary and conclusion

Little is known about the effect of inter-colloidal interactions on 
their thermophoretic behavior. We present a systematic approach for 
electro-neutral, uncharged colloids that predicts a thermophoretic force 
due to inter-colloidal interactions that has not been identified before. 
This force is given in eqs. (27), (34), which we referred to as the ther-

mophoretic interaction force.

The total thermophoretic force on a colloidal particle consists of two 
parts: (i) a single-particle contribution that result from the temperature-

gradient response of the internal degrees of freedom of, for example, 
an electric double layer, a surface-grafted polymer brush, adsorbed 
surfactants, a solvation layer, and the core of the colloid, and (ii) a 
contribution that arises from interactions between the colloids. For 
electro-neutral, uncharged colloids, it is shown by means of a linear 
irreversible thermodynamics approach that the total force on a colloid 
due to concentration and temperature gradients is equal to the spa-

tial gradient of an effective, single-component chemical potential plus a 
purely thermophoretic contribution (see eq. (15)). From an effective 
one-component Gibbs-Duhem relation, the gradients of the effective 
chemical potential can be expressed in terms of gradients of the colloid 
pressure (see eq. (22)), which for isothermal systems is equal to spa-

tial gradients of the osmotic pressure as obtained experimentally from 
meniscus-height measurements. The remaining purely thermophoretic 
contribution to the force is proportional to the heat-of-transfer. With 
the neglect of mere heat conduction, eq. (22) for the force allows for the 
determination of an expression for the heat-of-transfer, being equal to 
the temperature derivative of the effective partial molar internal energy 
(see eq. (26)). The heat-of-transfer is thus shown to entail the two con-

tributions mentioned above, corresponding to a single-particle internal 
energy and an internal energy due to colloid-colloid interactions. The 
latter contribution to the thermophoretic force has not been considered 
in previous theories. The various contributions to the Soret coefficient 
in eq. (35) and the thermodiffusion coefficient in eqs. (41), (42) are 
expressed in terms of integrals over the colloid-colloid pair-correlation 
function. This allows for a particle-based comparison of the theory with 
experiments on suspensions of sticky hard spheres over a wide range 
of concentration and temperature. It is shown that the newly predicted 
contribution to the thermophoretic force is essential to describe the ex-

perimental data.

Equation (22) has been suggested before, with the omission of the 

heat-of-transfer, and without further justification, in Refs. [17,38–40]. 
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Since the new thermophoretic interaction force originates from the 
heat-of-transfer, these references therefore miss that contribution to the 
thermophoretic force. There is no previous systematic theory for the 
contribution of colloid-colloid interactions to the Soret coefficient and 
thermodiffusion coefficient at high concentrations.

The experiments on well-characterized, uncharged colloids in 
Ref. [24] span a wide range of concentration and temperature, which 
is essential for a detailed comparison with the theory. No other similar 
data on uncharged systems are available in literature. This is differ-

ent for the experimental data on concentrated dispersions of an ionic 
sodium dodecyl sulfate (SDS) charged micellar system at various ionic 
strengths reported in Refs. [3,22]. The experimental data for the Soret 
coefficient are fitted according to 𝑆𝑇 = 𝑆𝑇 ,0∕(1 + 2𝐵2𝜌𝑐), where 𝑆𝑇 ,0 is 
the Soret coefficient at zero concentration, and the denominator relates 
to the first order in concentration expansion of 𝜕𝑝𝑐∕𝜕𝜌𝑐 , with 𝐵2 the 
second virial coefficient. Comparing to eq. (35), the concentration de-

pendence of both (1∕𝜌𝑐) (𝜕𝑝𝑐∕𝜕𝑇 ) and 𝑓𝑖𝑛𝑡 are neglected. The obtained 
virial coefficients differ by a factor of about 2 from those obtained by 
independent light scattering experiments [76] (as correctly stated by 
the authors of Refs. [3,22]). Moreover, a strong temperature depen-

dence of the Soret coefficient due to interactions for the same system is 
found in Ref. [23].

Suspensions of concentrated system of charged colloids are outside 
the scope of the present paper. The gradients in ion concentrations 
induced by the colloid concentration gradient (like in sedimentation 
experiments [77,78]), as well as the thermophoretic motion of the ions, 
both contribute to the migration force of the colloids, which therefore 
requires additional considerations as compared to electro-neutral col-

loids. Charged colloids will be addressed in a forthcoming publication, 
where ions are taken into account within the same approach as devel-

oped here for uncharged colloids.

For charged colloids, the expression (30) for the single-particle ther-

mophoretic force neglects contributions from temperature-gradient in-

duced deformation of the electric double layer and the resulting electro-

osmotic flow. These additional forces, however, are small for polar 
solvents like water [9]. To within a linear Boltzmann approximation the 
internal energy of the electric double layer is equal to 𝑢𝑠𝑖𝑛𝑔𝑙𝑒 = 𝑄 Ψ𝑠∕2, 
with 𝑄 the surface charge and Ψ𝑠 the surface potential. The result-

ing expression for the single-particle Soret coefficient obtained from 
eq. (30) is in agreement with experiments on charged spherical col-

loids [11,79] and rod-like colloids [80]. In general, however, there are 
additional contributions to the single-particle thermophoretic force in 
eq. (30).
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Appendix A. Approximations and assumptions

In this appendix we motivate the approximations and assumptions 
listed in the beginning of section 2:

(1) Gravitational forces on the colloids that either lead to sedimentation or 
buoyancy are not explicitly included. These forces add to the forces that 
are explicitly discussed, and may be included in all equations below. For 
the experiments that we discuss these forces are irrelevant.

That such forces are not relevant for the colloidal system and exper-

imental technique under consideration as described in subsection 4.1

can be seen as follows. First of all, concentration gradients due to 
thermophoresis in the experiments used are perpendicular to those 
caused by gravitational forces, and only a sinusoidal concentration pro-

file due to thermophoresis is probed. The effect of gravitational forces 
on the experimental results can therefore only be significant through 
the variation of the ambient colloid concentration over length scales 
of the order of the height of the sample volume, within which the 
laser beams are crossed, approximately ℎ ≈ 1 mm. Since the specific 
mass density of toluene is equal to 900 kg/m3 and that of colloidal sil-
ica 2200 kg/m3, we have Δ𝑚 = (4𝜋∕3) 𝑎3 × 1300 kg = 1.8 × 10−20 kg. 
Hence, Δ𝑚 𝑔 ℎ∕𝑘𝐵𝑇 ≈ 0.004. The relative difference of the ambient col-

loid concentration within the probed sample volume is therefore about 
0.4%, and can be safely neglected.

(2) Partial molar volumes of the colloids and the solvent molecules are 
assumed to be independent of pressure, concentration, and temperature.

The volume of the solid core of the colloids and the concentration of 
solvent molecules (the solvent being quasi-incompressible) are essen-

tially independent of the small pressure variations in experiments (of 
the order of fractions of the atmospheric pressure). As discussed above, 
cross-interactions can be neglected, so that partial molar volumes are 
also independent of the colloid concentration. We also neglect the tem-

perature dependence of the partial molar volumes. There is, however, 
a contribution of the difference in the thermal expansion coefficients of 
the core of the colloids and the solvent, which contributes to the single-

particle thermodiffusion coefficient, as discussed in subsection 2.3.

(3) The total pressure is assumed to be independent of position.

For typical solvents like water and toluene (the solvent that is used 
for the colloidal suspension to which the theory will be applied), the 
propagation velocity of pressure waves varies between 1000–1500 m/s. 
For a closed sample container with a typical size of ℎ = 1 mm, the 
time 𝜏𝑝 it takes for the spatial relaxation of pressure waves induced by 
the motion of the colloids is therefore of the order of a μs. The dis-

tance 𝑙𝑇 that a colloid traverses during the pressure relaxation time 𝜏𝑝

due to thermophoresis is equal to 𝑙𝑇 = (|𝐷𝑇 |∕𝜌𝑐) 𝜏𝑝|∇𝑇 |, where 𝐷𝑇 is 
the thermodiffusion coefficient as defined in the introduction and 𝜌𝑐 is 
the number concentration of colloids. From the definition of the Soret 
coefficient in eq. (2), this can also be written as 𝑙𝑇 = |𝑆𝑇 | 𝐷𝑐 𝜏𝑝|∇𝑇 |. 
The distance 𝑙𝑇 should be much smaller than the linear dimensions 
of the irreversible-thermodynamics volume elements in order to as-

sure that during the time 𝜏𝑝 the concentration profile does not sig-

nificantly change. Since these volume elements are thermodynamic 
systems, a small, safe upper bound for 𝑙𝑇 would be 10 𝑎, where 𝑎

is the linear dimension of a colloid. This sets an upper limit for the 
temperature gradient: |∇𝑇 | ≲ 10 𝑎∕(|𝑆𝑇 |𝐷𝑐 𝜏𝑝). For typical values of 
𝐷𝑐 ≈ (10−9–10−11) m2∕s, 𝑎 = (5–500) nm, |𝑆𝑇 | ≈ (0–10)∕𝑇 K−1, and 
𝑇 = 300 K, it is thus found that |∇𝑇 | ≲ 109 K/m. This upper bound 
for the validity of a quasi-instantaneous relaxation of the total pres-

sure, during which the colloid concentration profile does not signifi-

cantly change, is far beyond typical temperature gradients (less than 

104 K/m) employed in experiments, and is most probably beyond the 
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validity of a linear-irreversible thermodynamics approach. The temper-

ature gradient for the experimental results discussed in sections 4 and 
5 is (1–2) K/m.

(4) The number of solvent molecules, residing in thin solvation layers 
around the surfaces of all colloids, and which interact directly with 
them, is negligible compared to the number of molecules within the bulk 
solvent.

Interactions between the solvent molecules and the colloids leads to 
solvation layers at the surfaces of the colloids, with a thickness of a 
few times the linear dimension 𝑙𝑠 of a solvent molecule. The number 
of solvent molecules within the solvation layers is equal to 𝑁𝑠𝑜𝑙𝑣 =
4𝜋𝑎2𝑙𝑠𝑁𝑐∕𝑣𝑠 where 𝑎 is the radius of a (spherical) colloid, 𝑁𝑐 is 
the number of colloids, and 𝑣𝑠 is the volume occupied by a solvent 
molecule. The number of solvent molecules within the remaining bulk 
solvent is equal to 𝑁𝑏𝑢𝑙𝑘 = (1 − 𝜑) 𝑉 ∕𝑣𝑠, where 𝑉 is the total vol-

ume, and 𝜑 = (4𝜋∕3)(𝑎 + 𝑙𝑠)3𝜌𝑐 , with 𝜌𝑐 = 𝑁𝑐∕𝑉 . Hence, 𝑁𝑠𝑜𝑙𝑣∕𝑁𝑏𝑢𝑙𝑘 =
3 (𝑙𝑠∕𝑎) 𝜑∕(1 − 𝜑) to leading order in 𝑙𝑠∕𝑎. This is a very small number 
since 𝜑 is not larger than about 1∕2, and 𝑙𝑠∕𝑎 ≪ 1, that is, colloids are 
by definition much larger than the size of the solvent molecules. A col-

loid is therefore considered to consist of its core plus its solvation layer 
with an extent that is negligible compared to the colloid size. The col-

loid surface may contain, for example, a thin layer of grafted polymers 
that contributes to the interactions between the colloids. This is the 
case for the experimental system to which the theory is applied in this 
paper. At contact of the colloids these layers give rise to temperature 
dependent attractive colloid-colloid interactions.

(5) Bulk solvent attains equilibrium quasi-instantaneously for each config-

uration of the colloids.

The time scale 𝜏𝑚𝑖𝑐𝑟𝑜 on which micro-structural order of a solvent like 
water relaxes is of the order of pico seconds, while for colloids typical 
relaxation times are of the order of tens of microseconds to milliseconds 
(depending on the size of the colloids and their concentration). Further-

more, the displacement 𝑙𝑇 of a colloid due to thermodiffusion during 
relaxation of the solvent, relative to the radius 𝑎 of a colloid is equal 
to (see also point (3) above) 𝑙𝑇 ∕𝑎 = |𝑆𝑇 | 𝐷𝑐 |∇𝑇 | 𝜏𝑚𝑖𝑐𝑟𝑜∕𝑎. For typical 
values (see point (3) above) and |∇𝑇 | < 100 K/m, is thus found that 
𝑙𝑇 ∕𝑎 ≈ (0–3) × 10−21.

(6) The force on a colloidal particle due to heat conduction in the absence 
of mass transport will be neglected.

Mere heat conduction, in the absence of mass transport, occurs through 
the solvent and the colloidal cores which behave like a macroscopic 
solid material. Contrary to (mixtures of) simple liquids, microstructural 
order is therefore not affected by mere heat conduction, and is therefore 
neglected. Including mere heat conduction would require a molecular-

based microscopic kinetic theory, which could be important for simple 
liquids.

Appendix B. The colloid pressure 𝒑𝒄

Consider a container with a fixed temperature, a fixed volume 𝑉 , 
and a fixed number of 𝑁𝑐 of colloids and 𝑁𝑠 solvent molecules. We 
start with the well-known definition of the phase function,

𝐺 ≡ 1
𝑉

𝑁𝑐∑
𝑗=1

𝐩𝑐
𝑗
⋅ 𝐫𝑐

𝑗
+ 1

𝑉𝑎

𝑁𝑠∑
𝑗=1

𝐩𝑠
𝑗
⋅ 𝐫𝑠

𝑗
, (48)

where 𝐩𝑐,𝑠

𝑗
and 𝐫𝑐,𝑠

𝑗
are the momentum and position coordinates of the 

𝑗𝑡ℎ colloid and solvent molecule. Just as in the standard derivation of 
the virial theorem, the time-derivative of 𝐺 is time-averaged over a 
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time interval that is sufficiently large to establish thermodynamic equi-
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librium. Assuming that 𝐺 is a bounded function of time, leads to (<⋯ >
denotes the time averaging),

0 = 3
𝑁𝑐

𝑉
𝑘𝐵𝑇 + 3

𝑁𝑠

𝑉
𝑘𝐵𝑇

+ 1
𝑉

𝑁𝑐∑
𝑗=1

< 𝐅𝑐
𝑗
⋅ 𝐫𝑐

𝑗
> + 1

𝑉

𝑁𝑠∑
𝑗=1

< 𝐅𝑠
𝑗
⋅ 𝐫𝑠

𝑗
> (49)

+ 1
𝑉

𝑁𝑐∑
𝑗=1

< 𝐅𝑐
𝑗,𝑊

⋅ 𝐫𝑐
𝑗

> + 1
𝑉

𝑁𝑠∑
𝑗=1

< 𝐅𝑠
𝑗,𝑊

⋅ 𝐫𝑠
𝑗

> ,

where the equi-partition theorem for translational motion and Newton’s 
equation of motion is used. Here, 𝐅𝑐

𝑗
is the force on the colloid due to 

interactions with other colloids and solvent molecules, and 𝐅𝑐
𝑗,𝑊

is the 
force that the wall exerts on the colloid, and similar for the solvent 
molecules.

The force 𝐅𝑐
𝑗

and 𝐅𝑠
𝑗

on colloid 𝑗 and solvent molecule 𝑗, respec-

tively, can be written as,

𝐅𝑐
𝑗
=

𝑁𝑐∑
𝑖(≠𝑗)=1

𝐅𝑐𝑐
𝑗𝑖
+

𝑁𝑠∑
𝑖=1

𝐅𝑐𝑠
𝑗𝑖

𝐅𝑠
𝑗
=

𝑁𝑠∑
𝑖(≠𝑗)=1

𝐅𝑠𝑠
𝑗𝑖
+

𝑁𝑐∑
𝑖=1

𝐅𝑠𝑐
𝑗𝑖

, (50)

where 𝐅𝑐𝑐
𝑗𝑖

is the force of colloid 𝑖 on colloid 𝑗, and 𝐅𝑐𝑠
𝑗𝑖

is the force of 
solvent molecule 𝑖 on colloid 𝑗, and similarly for the force on a solvent 
molecule.

The sum 𝑆𝑐𝑟𝑜𝑠𝑠 of the two contributions to eq. (49) arising from the 
“cross terms” on the right hand-side in eq. (50) can be written as,

𝑆𝑐𝑟𝑜𝑠𝑠 = 1
𝑉

𝑁𝑐∑
𝑗=1

𝑁𝑠∑
𝑖=1

< 𝐅𝑐𝑠
𝑗𝑖
⋅
(
𝐫𝑐
𝑗
− 𝐫𝑠

𝑖

)
> , (51)

where it is used that 𝐅𝑠𝑐
𝑖𝑗

= − 𝐅𝑐𝑠
𝑗𝑖

. First notice that only those solvent 
molecules that are in the immediate vicinity of the colloid’s surface act 
with a force on the colloid. Furthermore, the vast majority of solvent 
molecules interact with only a single colloid. Equation (51) can thus be 
simplified to,

𝑆𝑐𝑟𝑜𝑠𝑠 = −
𝑁𝑐

𝑉

𝑁𝑠∑
𝑖=1

< 𝐅𝑐𝑠
𝑗𝑖
⋅𝐑𝑠

𝑖
> , (52)

where 𝐑𝑠
𝑖

is the position of solvent molecule 𝑖 at the surface 𝜕𝑉𝑗 of the 
colloid, relative to the position coordinate of the colloid.

The position coordinate 𝐑𝑠
𝑖

of a solvent molecule that interacts with 
the colloid’s surface is essentially equal to the position 𝐑 of the surface 
element, so that,

<
∑
𝑖∈𝑑𝑆

𝐅𝑐𝑠
𝑗𝑖
⋅𝐑𝑠

𝑖
> = <

∑
𝑖∈𝑑𝑆

𝐅𝑐𝑠
𝑗𝑖

> ⋅𝐑 . (53)

Since the colloids are much larger than the solvent molecules, the aver-

age force of solvent molecules on a surface element 𝑑𝑆 of colloid 𝑗 can 
be written as,

<
∑
𝑖∈𝑑𝑆

𝐅𝑐𝑠
𝑗𝑖

> = −𝐧̂𝑝𝑠 𝑑𝑆 , (54)

where the summation ranges over all solvent molecules in the vicinity 
of the surface element which act with a force on that surface element, 
and where 𝐧̂ is the unit surface vector pointing towards the solvent, and 
where 𝑝𝑠 is contribution to the pressure of the solvent.

Using the obvious equality,

<

𝑁𝑠∑
𝐅𝑐𝑠

𝑗𝑖
⋅ 𝐑𝑠

𝑖
>= ∮ 𝑑𝑆 <

∑
𝐅𝑐𝑠

𝑗𝑖
⋅𝐑𝑠

𝑖
> , (55)
𝑖=1
𝜕𝑉𝑗

𝑖∈𝑑𝑆
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it thus follows that,

𝑆𝑐𝑟𝑜𝑠𝑠 = 𝑝𝑠

𝑁𝑐

𝑉 ∮
𝜕𝑉𝑗

𝑑𝑆 𝐧̂ ⋅ 𝐑 = 3𝜑𝑝𝑠 , (56)

where 𝜑 = (𝑁𝑐∕𝑉 )𝑣𝑐 is the volume fraction of colloids, with 𝑣𝑐 the 
volume of a single colloid.

Similarly the interactions with walls are found to be equal to,

1
𝑉

𝑁𝑠∑
𝑗=1

< 𝐅𝑠
𝑗,𝑊

⋅ 𝐫𝑗 > = −3𝑝𝑠

1
𝑉

𝑁𝑐∑
𝑗=1

< 𝐅𝑐
𝑗,𝑊

⋅ 𝐫𝑗 > = −3𝑝𝑐 , (57)

where 𝑝𝑐 is contribution to the total pressure due to the interactions of 
the colloids with the wall of the container.

Gathering the above results for the various terms occurring on the 
right hand-side of eq. (49) leads to the following expression for the total 
pressure 𝑝,

𝑝 = 𝑝𝑐 + 𝑝𝑠 , (58)

where,

𝑝𝑐 =
𝑁𝑐

𝑉
𝑘𝐵𝑇 + 1

3𝑉

𝑁𝑐∑
𝑗=1

< 𝐅𝑐𝑐
𝑗
⋅ 𝐫𝑐

𝑗
> ,

𝑝𝑠 =
𝑁𝑠

𝑉𝑎

𝑘𝐵𝑇 + 1
3𝑉𝑎

𝑁𝑠∑
𝑗=1

< 𝐅𝑠𝑠
𝑗
⋅ 𝐫𝑠

𝑗
> , (59)

where 𝑉𝑎 = 𝑉 (1 −𝜑) is the volume that is accessible to the solvent 
molecules.

Evaluation of the expression in eq. (59) for 𝑝𝑐 in terms of integrals 
with respect to the probability density function for the position coordi-

nates of the colloids leads to the equation-of-state in (32).

Appendix C. The average mechanical force on the colloids

The average force on a colloid due to mechanical interactions with 
other colloids in an inhomogeneous system is equal to,

𝐅𝑚𝑒𝑐ℎ = ∫ 𝑑𝐫′ 𝜌𝑐(𝐫′, 𝑡)𝑔(𝐫, 𝐫′, 𝑡)𝐅(𝐑|𝑇 ) , (60)

where 𝑔(𝐫, 𝐫′, 𝑡) is the pair-correlation function, with 𝐑 = 𝐫′ − 𝐫, and 
where 𝐅 = −∇𝑉 (𝐑|𝑇 ), with 𝑉 the (generally temperature dependent) 
pair-interaction potential.

The integration range of the 𝐫′-integration in eq. (60) is limited to 
a region of extent 𝑅𝑉 around 𝐫, where 𝑅𝑉 is the range of the pair-

interaction potential: ∇𝑉 (|𝐫 − 𝐫′|) = 𝟎 for |𝐫 − 𝐫′| > 𝑅𝑉 . For these small 
distances, the relaxation of the pair-correlation-function is much faster 
as compared the time scale on which the relatively smooth colloid con-

centration profile is evolving. One can therefore assume that 𝑔(𝐫, 𝐫′, 𝑡)
is the equilibrium pair-correlation function 𝑔𝑒𝑞(|𝐫 − 𝐫′|) at the instan-

taneous local concentration 𝜌𝑐([𝐫 + 𝐫′]∕2, 𝑡) and the local temperature 
𝑇 ([𝐫 + 𝐫′]∕2). This can be regarded as the statistical mechanical anal-

ogy of the concept of local equilibrium in irreversible thermodynamics. 
Furthermore, spatial gradients of the colloid density are now assumed 
to be sufficiently small, such that,

|||𝛿𝜌𝑐

(
𝐫 + 𝐫′
2

, 𝑡

)|||
≡ |||𝜌𝑐

(
𝐫 + 𝐫′
2

, 𝑡

)
− 𝜌𝑐(𝐫, 𝑡)

||| ≪ 𝜌𝑐(𝐫, 𝑡) , (61)

for |𝐫′ − 𝐫| ≤ 𝑅𝑉 , which is satisfied when the change of the relative 
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colloid concentration over distance of the order 𝑅𝑉 is small, that is 
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𝑅𝑉 |∇𝜌𝑐(𝐫, 𝑡)| ≪ 𝜌𝑐(𝐫, 𝑡). The same restriction on the magnitude of tem-

perature gradients will be assumed. For such small spatial gradients, the 
pair-correlation function can be expanded as,

𝑔(𝐫, 𝐫′, 𝑡) (62)

= 𝑔𝑒𝑞(𝑅) + 𝜕𝑔𝑒𝑞(𝑅)
𝜕𝜌𝑐

𝛿𝜌𝑐

(
𝐫 + 𝐫′
2

, 𝑡

)
+ 𝜕𝑔𝑒𝑞(𝑅)

𝜕𝑇
𝛿𝑇

(
𝐫 + 𝐫′
2

)
= 𝑔𝑒𝑞(𝑅) + 1

2
𝜕𝑔𝑒𝑞(𝑅)

𝜕𝜌𝑐

𝐑 ⋅∇𝜌𝑐(𝐫, 𝑡) +
1
2

𝜕𝑔𝑒𝑞(𝑅)
𝜕𝑇

𝐑 ⋅∇𝑇 (𝐫) ,

with 𝐑 = 𝐫′ − 𝐫, and 𝑔𝑒𝑞(𝑅) is the equilibrium pair-correlation function 
at the colloid concentration 𝜌𝑐(𝐫, 𝑡) and temperature 𝑇 (𝐫). Note that 
𝑔𝑒𝑞(𝑅) is implicitly time dependent, since it is evaluated at the time-

dependent concentration 𝜌𝑐(𝐫, 𝑡).
Within the same approximation,

𝐅
(
𝐑 |||𝑇

(
𝐫 + 𝐫′
2

))
(63)

= 𝐅 (𝐑 |𝑇 (𝐫)) + 1
2

[
𝑑

𝑑𝑇 (𝐫)
𝐅 (𝐑 |𝑇 (𝐫))

](
𝐫′ − 𝐫

)
⋅∇𝑇 (𝐫)

= −∇𝑅𝑉 (𝑅|𝑇 (𝐫)) − 1
2

[
𝑑

𝑑𝑇 (𝐫)
∇𝑅𝑉 (𝐑|𝑇 (𝐫))

]
𝐑 ⋅∇𝑇 (𝐫) ,

where ∇𝑅 is the gradient operator with respect to 𝐑.

For the same reason, for the slowly changing concentration as com-

pared to the range 𝑅𝑉 of the pair-interaction potential, the concentra-

tion 𝜌𝑐(𝐫′, 𝑡) in eq. (60) can similarly be written as,

𝜌𝑐(𝐫′, 𝑡) = 𝜌𝑐(𝐫, 𝑡) +𝐑 ⋅∇𝜌𝑐(𝐫, 𝑡) . (64)

Substitution of eqs. (62), (63), (64) into the integral in eq. (60) leads, 
with some effort, to,

𝐅𝑚𝑒𝑐ℎ = −∫ 𝑑𝐫′ 𝜌𝑐(𝐫′, 𝑡)𝑔(𝐫, 𝐫′, 𝑡)∇𝑉 (|𝐫 − 𝐫′|)
= − 1

𝜌𝑐

{
∇𝜌𝑐(𝐫, 𝑡)

𝜕

𝜕𝜌𝑐

−∇𝑇 (𝐫) 𝜕

𝜕𝑇

}[
𝑝𝑐 − 𝜌𝑐 𝑘𝐵 𝑇

]
= − 1

𝜌𝑐

∇
[
𝑝𝑐 − 𝜌𝑐 𝑘𝐵 𝑇

]
, (65)

where,

𝑝𝑐(𝜌𝑐, 𝑇 ) = 𝜌𝑐 𝑘𝐵𝑇 − 2𝜋
3

𝜌2
𝑐 ∫ 𝑑𝑅 𝑅3 𝑔𝑒𝑞(𝑅) 𝑑𝑉 (𝑅)

𝑑𝑅
, (66)

is the virial equation-of-state for the colloid pressure, as shown in Ap-

pendix A. Here it is understood that 𝜌𝑐 = 𝜌𝑐(𝐫, 𝑡) and 𝑇 = 𝑇 (𝐫), and that 
the pair-correlation function is evaluated at that colloid concentration 
and temperature.

Appendix D. Connection between experimental and theoretical 
coefficients

The number flux 𝐉𝑐 of colloids as used in this paper is written as,

𝐉𝑐 = −𝐷𝑐 ∇𝜌𝑐 −𝐷𝑇 ∇𝑇 , (67)

which defines the theoretical diffusion coefficients. The following alter-

native expression for the flux is given in Ref. [24],

𝐉𝑐 = −
𝜌𝑐

𝑚𝑐

𝐷⋆
𝑐
∇𝑤−

𝜌𝑐

𝑚𝑐

𝑤 (1 −𝑤)𝐷⋆
𝑇
∇𝑇 , (68)

where 𝑤 is the mass fraction of colloids, 𝜌𝑐 is the mass density of the 
suspension, and 𝑚𝑐 is the mass of a single colloidal particle. In order to 
compare the diffusion coefficients 𝐷⋆

𝑐
and 𝐷⋆

𝑇
to the theoretical diffu-

sion coefficients 𝐷𝑐 and 𝐷𝑇 , the mass fraction and mass density of the 
suspension in eq. (68) are rewritten in terms of the number concentra-

tion. To this end, we need to specify the mass density 𝜌𝑠
𝑚
[kg/m3] of the 

solvent and 𝜌𝑐
𝑚
[kg/m3] of the colloids. As will be shown below, only 
their ratio 𝛼 will be of importance,
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𝛼 = 𝜌𝑐
𝑚
∕𝜌𝑠

𝑚
=

𝑚𝑐∕𝑣𝑐

𝑚𝑠∕𝑣𝑠

, (69)

where 𝑚𝑠 is the mass of a single solvent molecule. Using that,

𝜌𝑐 =
𝑚𝑐

𝛼 𝑣𝑐

[1 + (𝛼 − 1)𝜑 ] ,

𝑤 =
𝑚𝑐𝜌𝑐

𝜌𝑐

= 𝛼 𝜑

1 + (𝛼 − 1)𝜑
, (70)

it is readily found that the flux in eq. (68) can also be written as,

𝐉𝑐 = −
[
1 −𝑤

(
1 − 1

𝛼

)]
𝐷⋆

𝑐
∇𝜌𝑐 − 𝜌𝑐(1 −𝑤)𝐷⋆

𝑇
∇𝑇 . (71)

Comparing to eq. (67) it is thus found that,

𝐷𝑐 =
[
1 −

(
1 − 1

𝛼

)
𝑤

]
𝐷⋆

𝑐
,

𝐷𝑇 = 𝜌𝑐 (1 −𝑤)𝐷⋆
𝑇

, (72)

𝑆𝑇 ≡ 1
𝜌𝑐

𝐷𝑇

𝐷𝑐

= 1 −𝑤

1 −
(
1 − 1

𝛼

)
𝑤

𝐷⋆
𝑇

𝐷⋆
𝑐

≡ 1 −𝑤

1 −
(
1 − 1

𝛼

)
𝑤

𝑆⋆
𝑇

,

which can be expressed in terms of the volume fraction, leading to,

𝐷𝑐 =
1

1 + (𝛼 − 1)𝜑
𝐷⋆

𝑐
,

𝐷𝑇 =
𝜌𝑐 (1 −𝜑)

1 + (𝛼 − 1)𝜑
𝐷⋆

𝑇
, (73)

𝑆𝑇 = 𝜌𝑐 (1 −𝜑)𝑆⋆
𝑇

.

From eqs. (68), (70) the following equation of motion for 𝑤 is ob-

tained,

𝜕𝑤

𝜕𝑡
=
[
1 −

(
1 − 1

𝛼

)
𝑤

][
𝐷⋆

𝑐
∇𝑤+𝑤 (1 −𝑤)𝐷⋆

𝑇
∇𝑇

]
. (74)

Despite the expression for the flux in eq. (68) given in Ref. [24], the 
TDFRS data are not based on the equation of motion (74) that complies 
with it. Instead, the equation of motion that is used reads,

𝜕𝑤

𝜕𝑡
=

[
𝐷𝑒𝑥𝑝

𝑐
∇𝑤+𝑤 (1 −𝑤)𝐷𝑒𝑥𝑝

𝑇
∇𝑇

]
, (75)

where the experimentally obtained diffusion coefficients, and the corre-

sponding Soret coefficient, are related to those in eq. (68), by comparing 
the two equations of motion above,

𝐷𝑒𝑥𝑝
𝑐

=
[
1 −

(
1 − 1

𝛼

)
𝑤

]
𝐷⋆

𝑐
,

𝐷
𝑒𝑥𝑝

𝑇
=
[
1 −

(
1 − 1

𝛼

)
𝑤

]
𝐷⋆

𝑇
, (76)

𝑆
𝑒𝑥𝑝

𝑇
= 𝑆⋆

𝑇
.

The relation between these experimental coefficients with the theoreti-

cal coefficients follows from the above considerations,

𝐷𝑒𝑥𝑝
𝑐

= 𝐷𝑐 ,

𝐷
𝑒𝑥𝑝

𝑇
= 1

𝜌𝑐 (1 −𝜑)
𝐷𝑇 , (77)

𝑆
𝑒𝑥𝑝

𝑇
= 1

1 −𝜑
𝑆𝑇 . (78)

These relations are used to convert theoretical coefficients to their ex-

perimental counterparts.
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