Hauptseite > Publikationsdatenbank > Phase change memory materials: Why are alloys of Ge, Sb, and Te the materials of choice? > print |
001 | 1029367 | ||
005 | 20250203133153.0 | ||
024 | 7 | _ | |a 10.1016/j.solidstatesciences.2024.107524 |2 doi |
024 | 7 | _ | |a 1293-2558 |2 ISSN |
024 | 7 | _ | |a 1873-3085 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05076 |2 datacite_doi |
024 | 7 | _ | |a WOS:001219745300001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05076 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Jones, Robert O. |0 P:(DE-Juel1)130741 |b 0 |e Corresponding author |
245 | _ | _ | |a Phase change memory materials: Why are alloys of Ge, Sb, and Te the materials of choice? |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1724219808_29104 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Rewritable optical storage is dominated by alloys of a small number of elements, particularly Ge, Sb, and Te, and Ge/Sb/Te alloys in the composition range (GeTe)1−x(Sb2Te3)x (0 ≤ x ≤ 1) have been the materials of choice: all have metastable rock salt structures that change little over decades at archival temperatures, and all contain vacancies (cavities). The special status arises from the close similarity of the valence orbitals of Ge, Sb, and Te, which arises from the irregular changes in atomic orbitals and properties as the atomic number increases (“secondary periodicity”). The instability of cubic (metallic) Bi to a (semimetallic) rhombohedral structure (H. Jones, 1934) can be adapted to Ge/Sb/Te alloys and explains the crucial metastable (rock salt) structures of these compounds. Vacancies almost always occur next to Te atoms, which form one sublattice of the rock salt structure. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
773 | _ | _ | |a 10.1016/j.solidstatesciences.2024.107524 |g Vol. 152, p. 107524 - |0 PERI:(DE-600)2035101-X |p 107524 - |t Solid state sciences |v 152 |y 2024 |x 1293-2558 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1029367/files/1-s2.0-S129325582400089X-main.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1029367/files/1-s2.0-S129325582400089X-main.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1029367/files/1-s2.0-S129325582400089X-main.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-700 |u https://juser.fz-juelich.de/record/1029367/files/1-s2.0-S129325582400089X-main.jpg?subformat=icon-700 |
909 | C | O | |o oai:juser.fz-juelich.de:1029367 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130741 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |2 APC |0 PC:(DE-HGF)0125 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOLID STATE SCI : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|