001     1029374
005     20250203133153.0
024 7 _ |a 10.1016/j.sbi.2024.102817
|2 doi
024 7 _ |a 0959-440X
|2 ISSN
024 7 _ |a 1879-033X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05083
|2 datacite_doi
024 7 _ |a 38795562
|2 pmid
024 7 _ |a WOS:001246972300001
|2 WOS
037 _ _ |a FZJ-2024-05083
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Diaz-Pier, Sandra
|0 P:(DE-Juel1)165859
|b 0
|e Corresponding author
245 _ _ |a Impact of quantum and neuromorphic computing on biomolecular simulations: Current status and perspectives
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724216440_30528
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a New high-performance computing architectures are becoming operative, in addition to exascale computers. Quantum computers (QC) solve optimization problems with unprecedented efficiency and speed, while neuromorphic hardware (NMH) simulates neural network dynamics. Albeit, at the moment, both find no practical use in all atom biomolecular simulations, QC might be exploited in the not-too-far future to simulate systems for which electronic degrees of freedom play a key and intricate role for biological function, whereas NMH might accelerate molecular dynamics simulations with low energy consumption. Machine learning and artificial intelligence algorithms running on NMH and QC could assist in the analysis of data and speed up research. If these implementations are successful, modular supercomputing could further dramatically enhance the overall computing capacity by combining highly optimized software tools into workflows, linking these architectures to exascale computers.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 2
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 3
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 1
|u fzj
773 _ _ |a 10.1016/j.sbi.2024.102817
|g Vol. 87, p. 102817 -
|0 PERI:(DE-600)2019233-2
|p 102817
|t Current opinion in structural biology
|v 87
|y 2024
|x 0959-440X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029374/files/1-s2.0-S0959440X24000447-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029374/files/1-s2.0-S0959440X24000447-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029374/files/1-s2.0-S0959440X24000447-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/1029374/files/1-s2.0-S0959440X24000447-main.jpg?subformat=icon-700
909 C O |o oai:juser.fz-juelich.de:1029374
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CURR OPIN STRUC BIOL : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CURR OPIN STRUC BIOL : 2022
|d 2024-12-09
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21