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Abstract
New high-performance computing architectures are becoming
operative, in addition to exascale computers. Quantum com-
puters (QC) solve optimization problems with unprecedented
efficiency and speed, while neuromorphic hardware (NMH)
simulates neural network dynamics. Albeit, at the moment,
both find no practical use in all atom biomolecular simulations,
QC might be exploited in the not-too-far future to simulate
systems for which electronic degrees of freedom play a key
and intricate role for biological function, whereas NMH might
accelerate molecular dynamics simulations with low energy
consumption. Machine learning and artificial intelligence al-
gorithms running on NMH and QC could assist in the analysis
of data and speed up research. If these implementations are
successful, modular supercomputing could further dramatically
enhance the overall computing capacity by combining highly
optimized software tools into workflows, linking these archi-
tectures to exascale computers.
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Introduction
The advent of exascale machines, which may dramatically
speed up biomolecular simulations (BMS) [1], is accom-
panied by emerging high performance computing (HPC)
technologies such as quantum computing and neuro-

morphic computing. These new architectures are
becoming present in computing centers such as the Jülich
Supercomputing Centre and Forschungszentrum Jülich1

or Oak Ridge.2 However, the biomolecular simulation
(BMS) community is not exploiting these powerful plat-
forms yet. After describing recent developments of these
architectures (Sections Neuromorphic computers and
Quantum computing), also assisted by artificial intelli-
gence (AI) andmachine learning (ML) (SectionsArtificial
intelligence-based neuromorphic hardware and Machine
learning and Quantum computer), we give our opinion

onwhether andhow these can be exploited and connected
to exascale machines in the future to boost BMS (Section
Modular supercomputing).
Neuromorphic computers
Neuromorphic hardware (NMH) is the collective name
of a set of devices designed using principles observed in
neural networks (see Figure 1). There is a vast variety of
implementations, which include, among others, digital,
analog, and hybrid NMH systems (see Box 1). These
computers can also be used for other applications be-
sides neural network simulations, like solving graph
search problems [2**] or solving steady-state partial
differential equations (PDEs) [3].

NMH is highly parallel and specialized to perform

computations similar to what biological neurons (i) and
their networks (ii) do. (i) In its most common and
simplest form, the equation for single leaky integrate
and fire (LIF) neurons [4e6] reads3:

tm
dv

dt
¼ �½vðtÞ� vrest � þ RIðtÞ (1)

where v(t) is the membrane potential at time t, tm is the

membrane leakage time constant, R is the resistance of the
3 The model of LIF neurons is the most frequently simulated or emulated model in

digital and hybrid NMH.
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Figure 1

Schematic of example von Neumann (a), GPU (b), digital NMH (c), hybrid NMH (d), and analog NMH (e) architectures (see Box 1). The arrows in
(c) indicate connections configurable via a routing table. In (D) the processing units are the neuron units, and the synaptic crossbar implements the
network connectivity. ALU represents an Arithmetic Logic Unit, and DRAM is a Dynamic Random Access Memory. The control units fetch instructions
from memory and send them to the ALU to be executed. The architecture of NMH architectures like (c) and (d) differ from those in (a) and (b), among
other things, in that these components are rearranged in terms of their proximity and interconnectivity. The architecture exemplified in (e) is more unique in
that these classic elements are not identifiable anymore. (e) shows a segment of analog circuitry used to emulate neural dynamics. The current flowing
through the electronic circuit emulates the changes in the membrane potential of the neuron, and memory is stored by means of changing the resistance
and capacitance of elements in the circuit. GPU, graphics processing unit; NMH, neuromorphic hardware.
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cell membrane, and I(t) is the input current to a single cell.
Spiking events emerge when v(t) surpasses the threshold vth
taking v(t) to a default reset potential value vrest [7].

(ii) The evolution of a stochastic network of N neurons,
according to the master equation by Cowan [15] and
Ohira and Cowan [16], reads:

d

dt
FðtÞ ¼ LFðtÞ (2)

where F(t) is the neural state vector, defined as

FðtÞ ¼
X
jUj

PðU; tÞU (3)

P(U, t) is the probability of finding the network in the

conformational state U of the simulated network at time t.
The Liouvillian L reads:

L ¼a
XN

i¼1

ðDþi�1ÞD�iþ
XN

i¼1

ðD�i�1ÞDþi
f

ni

0
@XN

j¼1

uijxj

1
A

(4)
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where a is the decay function after a neuron has spiked, Dþi

and D�i are the raising and lowering operators that take

neuron i to and from an activation state, respectively, ni is the
number of connections to neuron i, f is the activation rate

function,whichdepends on the singleneuronmodel (like the

one described in the first equation) and uij is the strength of

the connection between neuron i and j. The fact that this

hardware has been in principle designed to optimally solve

equations similar to the ones above limits the use of these

neuromorphic computers for BMS. However, educated

mappings ofmathematical equations to the operation of some

hardware components [17**] could lead eventually to effi-

cient computational solutions for completely different

problems, such as those relevant for BMS.

Some digital NMH, like SpiNNaker2 [18], combine

commercial multicore chips with highly optimized event
communication channels between the cores. They
capitalize on specialized communication technology
[19e21] to mimic the way the brain sends event-based
information among the components of neural networks.
The word “event” in this context refers to the emer-
gence of a neuronal spike. NMH with optimized event
exchange reduces the time required to communicate
www.sciencedirect.com
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Box 1. Types of neuromorphic computers

Digital NMH, like SpiNNaker [18] or Loihi [57,59], uses components similar to those found in normal (or von Neumann) architectures based
on central processing units (CPUs) and/or graphics processing units (GPUs). However, the communication protocols, the storage, the
networking and the computing elements are modified to maximize the energy efficiency and the speed of information exchange.

Analog NMH, like ROLLO [8,9] or COLAMN [10], emulates the way the brain works. It uses the intrinsic characteristics of electronic devices
(such as the behavior of current passing through a transistor, memristor, or an RC circuit) to emulate biological phenomena and solve
differential equations describing neural activity. Some devices perform in-memory computations, namely, execute mathematical
calculations as part of the normal operation of a memory unit. This may reduce the bottlenecks related to constantly moving data between
memory and the central processing units in von Neumann architectures [11,12*].

Hybrid NMH, like BrainScales [13] and Truenorth [14], combines analog and digital parts to enable brain-inspired computers while keeping a
flexible interface to classic digital computers. Besides addressing problems in neuroscience, it can solve machine learning tasks by
emulating spiking neural networks to encode algorithms is usually implemented with artificial neural networks.
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spikes in the neuronal network. However, the informa-
tion that can be exchanged using these “events” can be,
in principle, of an arbitrary nature.

The compute units are normal CPUs arranged in a
power-efficient in a highly parallel setup that can be
programmed to solve not only the equations above [22],
but also for other needs [23**]. Thus, other algorithms
(such as those of molecular dynamics, MD) could be
translated into this kind of hardware. While the MD
algorithms required to solve the differential equations

describing the potential energy function could be
executed in parallel using the multiple cores in the
NMH chips, the updates in velocity and position could
make use of the optimized networking protocols avail-
able on the chip. In a suitable mapping of an MDmodel,
each “neuron” could be responsible for calculating the
update in the position and speed of single atoms or small
groups of atoms in the system. According to our pro-
posed mapping from NMH to MD, the events could be
the updates in the position and velocity of single atoms.
For instance, one could replace the set of differential
equations that describe the neural dynamics (Eq. (1))

with the ones describing the changes in position and
velocity of an atom or group of atoms. Additionally, one
could use the data, communication, and computing
structures traditionally used to model synapses and ex-
change spikes to efficiently exchange the updates in the
position of each atom relative to the rest of the system
and to represent different short- and long-range in-
teractions between them.

Most importantly, this digital NMH may provide an
innovative and energy-efficient platform that can be

integrated as one module in a supercomputer and enable
new paradigms for accelerated MD simulations (see
Section Modular supercomputing). The energy effi-
ciency of NMH comes from (i) exchanging information
between computing units (neurons) only when the
“events” (defined above) take place, and doing
www.sciencedirect.com
computation only when all relevant information is
available, and (ii) having a closer distance between
memory and computing elements. The main side effect
of (i) and (ii) is the reduction of flexibility of the algo-
rithms used. For example, reading from external memory
or defining the connectivity between neurons in a
network during system configuration is usually very
time-consuming. If the structure of the network does
not change during the simulation, this configuration
only needs to be done once, and the overhead can be
compensated by the speedup in simulation time. The

loading and configuration step required to deploy algo-
rithms onto the NMH is currently one of its bottlenecks
and a problem that would need to be addressed. If
successful, digital and hybrid NMH could enable new
paradigms for accelerated MD simulations using a much
more energy efficient platform [18]. The current ideas
of mapping MD simulations onto neuromorphic hard-
ware are in their infancy. To our knowledge, no public
implementation of such an approach is available, nor
specific funding has been granted to projects in this
direction. In summary, NMH might be useful for MD,
but we don’t have a proof of principle yet that it can and

will actually be applied to it.

Artificial intelligence-based neuromorphic hardware
NMH implementing deep learning (DL) models has
proven to provide a computational backend with high
performance and low-energy consumption [24e26].
Software tools able to transform networks of artificial
neural networks into their spiking neural network coun-
terparts are available and provide an efficient mechanism
to translate machine learning models on some types of
digital and hybrid NMH with some limitations.

Digital NMH implementing Markov chain algorithms

can perform sampling of vast parameter spaces in a
tractable manner and with a low energy footprint
[27,28]. Porting existing machine and deep learning al-
gorithms for the analysis of molecular dynamics
Current Opinion in Structural Biology 2024, 87:102817
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Box 2. Types of quantum computing paradigms

Gate-based QC uses quantum equivalents of the classical
Boolean logic gates. Based on quantum circuits, they
operate on a set of qbits prepared on a known state to
execute a specific quantum algorithm.

Adiabatic QC maps problems onto the Hamiltonian of a
quantum system, whose initial state is easy to prepare, while
its final state encodes the solution to a problem. The final
state Hamiltonian is reached after the system evolves
according to Schrödinger’s equation in an adiabatic fashion.

4 Theory and Simulation/Computational Methods (2024)
simulation data eventually obtained by NMH is ex-
pected to be feasible with currently available software
tools [29,30]. In addition, this architecture, by imple-
menting a variety of AI and ML algorithms can provide
workflows to optimize, extract features, and reduce
energy consumption. This, in turn, could be exploited
for BMS. As discussed by Bai et al. [31] deep learning
models could be trained with simulation data produced

using classical MD simulators (i) to identify parameters
and additional data that is useful to optimize the
simulated results; (ii) to predict the transfer of free
energies using available simulated data and perform
otherwise computationally intensive mapping of rele-
vant system properties.

Some commercial neuromorphic chips have had great
success in terms of performance and energy usage while
solving state-of-the art problems as compared to GPUs.
The area is under heavy research and might see sub-

stantial progress and new applications within the next 5
years. Current limitations of this approach include
refining the training techniques to be applied to large-
spiking neural models, as well as efficiently dealing with
I/O and interfacing with other classical computing sys-
tems for further analysis and postprocessing. All these
challenges are currently under research [32e35].
Quantum computing
Quantum computing (QC) exploits the physical proper-
ties of systems at the atomic level to perform calculations
on different domains. These calculations can be of
different nature and applicable to a variety of scientific
fields, from chemistry to physics. It encodes problem
variables using qbits, the quantum equivalent of a bit. In

contrast to their classical counterparts, qbits can be in a
state of superpositionwhere the value they encode is both
0 and 1 at the same time. Computing on qbits means to
modify the probability that, after a measurement opera-
tion on the qbit is performed, the observed value will be
either a 0 or a 1. QC (along with Turing machines) might
solve nondeterministic polynomial (NP) time problems.
However, it might also address NP-hard problems, which
classic algorithms are not able to solve within tractable
time. QC can exploit a variety of different quantum
principles. Here we focus on two approaches able to solve

optimization problems very efficiently [36e40], gate-
based and adiabatic QC (See Box 2).

Baiardi et al. [41] discuss the usage and limitations
(such as those associated with data transfer and with
interfacing with classic computers) of applying QC to
biological processes at the molecular level. Adiabatic QC
is a good candidate for future applications, particularly
for optimization problems.
Current Opinion in Structural Biology 2024, 87:102817
While QC has already been proposed to study protein
folding [61], to accelerate drug discovery, [56,58], and to
perform data analysis in bioinformatics [60], no appli-
cation of QC to BMS has been reported.

QC implementations of Monte-Carlo algorithms
[42*,43] study sampling problems and hence could be
used to simulate biomolecular processes in the future,

provided that the hardware can increase in the number
of qbits compared to what is currently available (up to
1000 in the Atom QC).

Applying quantum chemistry approaches, such as those
of Haupt et al. [44*] to QC could also lead to practical
applications to highly correlated, complex metal-based
enzymes such as nitrogenase [45e48]. Systems as the
latter might be difficult to be treated by standard
quantum mechanics/molecular mechanics (QM/MM)
methods (for instance, using density functional theory),

because they may be either too costly and/or not scale
well and/or are not accurate enough. However, the use is
limited by (i) the relatively small amount of qbits
currently available in the state-of-the-art QC; (ii) the
lack of a fully developed software; (iii) the complex
problem mapping required to use quantum system-
sealgorithms in quantum computing should consider
the properties of the hardware, including state super-
position, entanglement, and tunneling, among others, as
well as the nondeterministic nature of the observations
performed at the end of the calculations. As a result, the

largest QC-based quantum chemical calculations so far
have been carried out on small systems (such as a
diazene molecule [49]).

Mapping a problem onto quantum systems requires a
reformulation of the problem components and the re-
lationships between them. Gating QC can translate
classical logic into its quantum equivalents, in contrast
to adiabatic QC, which is therefore expected to be even
more difficult to implement.
www.sciencedirect.com
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Tight collaborations between engineering experts in
quantum computing and molecular biophysicists could
enormously help to develop apt software and to find
suitable problem mappings leveraging the unique fea-
tures and inherent phenomena made accessible through
QC. These algorithms will also have to cope with limi-
tations, including access to required data and a suitable
interface to analyze the results.

Machine learning and Quantum computer
As QC efficiently addresses optimization problems

[50e52], ML-based algorithms executed using this
infrastructure and targeting hybrid simulation ap-
proaches such as QM/MM could be used to improve
accuracy and execution time. Combinatorial optimi-
zation of parameters for specific use cases where
inputs and outputs of a simulation can be measured
with discrete values can also be a target for
QC systems.
Modular supercomputing
Modular supercomputing [53] is an essential concept to
help NMH and QC to be adopted by the community
and to help identify the specific parts of an application
where each piece of hardware can provide the best
computing, networking, and energy efficiency. New
applications can be envisioned under the modular

approach combining NMH or QC with exascale systems.
Such applications could be workflows, where, e.g. sim-
ulations are carried out on the exascale system, and
analysis or parallel machine learning/optimization algo-
rithms are being executed in the NMH, or QC system.
Other applications include multiscale simulations,
where some specific features of a system at different
scales are calculated in the QC or NMH, while the more
general simulation of the system takes place on the
exascale module.

Thus, exascale supercomputing, which mostly relies on
GPUs to achieve high computational throughput [54*],
can be complemented by QC and NMH to accelerate
research, improve reliability, efficiency, and low energy
consumption. Such approaches could help overcome
bottlenecks related to memory access and communica-
tion between computing units, which will be critical to
reach the zettascale (1021 flops/seconds), expected to be
implemented in computer centers in only a few years
from now [55].

Conclusions
We have presented a brief overview of emerging HPC
technologies and their possible (future) implementa-
tions for BMS. We foresee that the use of NMH and QC,
especially if combined with the power of AI, could
dramatically enlarge the scope of BMS in a few years
from now.
www.sciencedirect.com
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