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Future energy systems incorporating high shares of intermittent renewable energy sources are often designed
using optimization-based, bottom-up energy system models. However, such models are generally limited to
single years and hourly resolutions. This study quantifies the precision loss between hourly and sub-hourly-
resolved data for the design and operation of a self-sufficient residential multi-energy system with respect to

Self-suffici . s . . . .
Lzstsll;adaency total costs, system design, and reliability using both averaging and sampling data methods. In this case study, the
Sub-hourly total annual cost is underestimated by 1.7% with the average hourly data relative to the fully-resolved minute

resolution data, mainly due to the sizing of the photovoltaic inverter and battery. This is a result of the sub-
hourly peaks in the supply and demand data that are evened out, significantly impacting the sub-electrical
system. The results show up to 89 kWh of the annual lost load of the total electrical and thermal load, and a
penalty cost of up to €894 (4+-24%) based on the value of the lost load. Another method, which employs regular
sampling of the original time series, shows unpredictable behavior with respect to the tendency of either over- or
underestimating system costs and components’ capacities depending on the selected samples. Both the sampling
and averaging methods highlight that while hourly resolution may suffice for total system cost approximations, it
falls short of sizing dynamically-operated components and meeting stringent reliability requirements. Future
research may aim to enhance the temporal resolution of global intermittent renewable energy sources and reduce
the computational expenses associated with minute-level resolutions.

1. Introduction Energy system models were developed during the latter part of the

twentieth century [3,4] and assist in evaluating the economic feasibility

The energy sector has recently been characterized by a remarkable
surge in renewable energy sources as the cornerstone for future sustainable
energy systems [1]. Some of these renewable energy sources are non-
dispatchable, as they exhibit intermittent power production such as the
diurnal cycle of photovoltaic availability during the day and its unavail-
ability at night. Energy system modeling has emerged as a technique to
enable a better understanding of the energy system to be gleaned and to
guide its successful transition. It includes a suite of mathematical and
computational tools to simulate, analyze, and optimize the energy sys-
tem’s operation and aids in understanding the complex interplays between
various components in generation, transmission, distribution, and storage
[2]. This allows for informed decisions to be made about the energy system
design, operational strategies, and resource allocation.

of different energy technologies and their integration into the existing
system [5]. They play a crucial role in assessing the environmental
sustainability of energy systems by quantifying greenhouse gas emis-
sions, air pollution, and other environmental externalities [6]. By taking
into account the inputs from diverse sources and experts, these models
can provide a holistic view of the energy system, taking into account
technological advancements, policy frameworks, economic factors, and
environmental considerations [7].

A growing number of studies model different energy scenarios,
especially using bottom-up energy system optimization to economically
and sustainably meet energy demand. Some of these include capacity
expansion, economic dispatch, and the power market. However, the
accuracy and reliability of the modeled system designs depend
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Fig. 1. The down-sampling approaches employed: left: using averaging; right: using equidistant sampling.

profoundly on the temporal resolution applied in the models [8]. The
temporal resolution refers to the intervals at which data is recorded. The
choice of temporal resolutions affects many system aspects, such as cost
accuracy, computational complexity, operation, and component sizing
of energy system models [8]. The choice of an appropriate temporal
resolution is not only pivotal for achieving the optimal design of energy
system models but also for addressing contemporary challenges such as
the reliable integration of intermittent renewable energy sources, the
dynamics of energy markets, and the pressing need for sustainability [9].

Most models determine optimal energy systems using an hourly
resolution [2,8,10]. This is due to the resulting lower model complexity
and higher data availability for hourly models as present in several
databases such as renewable.ninja [11,12], EMHIRES [13], Open Power
System Data [14], ERAS Reanalysis [15], MERRA2 Reanalysis [16], C3S
[17], NREL NSRDB [18], PECD for ENTSO-E [19], as compared to sub-
hourly resolution. Meanwhile, sub-hourly data is closer to real-time than
the hourly resolution, as the output of intermittent renewable energy
sources can change significantly within an hour.

Even though hourly modeling is more popular and less complex, the
significant impact of sub-hourly variance on different energy systems has
been investigated in some studies. When minute-based data is available,
the high-resolution data is frequently down-sampled to lower resolution
by either averaging or sampling to address computational complexity.
Averaging refers to taking the mean at specific periods, whereas sampling
is taking one instantaneous data point from the original dataset at specific
periods, as is shown in Fig. 1. Table 1, presenting the most recent litera-
ture, shows that hourly modeling can either under- or overestimate energy
system modeling results (as seen in the parameters and conclusions col-
umns), depending on the considered parameters or down-sampling
methods used. Although some studies reported a significant underesti-
mation by hourly resolution compared to the minute-level in the annual
generation or operating costs of systems through the averaging method, to
the best of the authors” knowledge, an assessment of the actual reliability
and feasibility of the systems derived from hourly data is lacking. In
addition, down-sampling via the sampling method by only considering the
instantaneous values of single time points at every hour is biased, as the
data points are bootstrapped to represent the full hour.

The present study amends these limitations by quantifying the impact
of sub-hourly resolution at 60-, 30-, 15-, 10-, 5-, and 1-minute intervals
using both the average and sampling methods for self-sufficient buildings.

In 2022, residential and industrial buildings accounted for 9.9% and
28.9% of global carbon emissions, respectively [20]. The purpose of self-
sufficient buildings is to supply energy on-site, drawing on renewable re-
sources such as wind and solar power [21]. The objective is to minimize
dependency on conventional power systems, cutting carbon emissions,
and potentially reducing energy costs. Furthermore, decentralized and
even 100% renewable energy systems are a constantly evaluated topic in
the literature [9]. This is because they are not only an option for defossi-
lization but also likely increase energy accessibility in remote,
geographically-isolated or underdeveloped rural areas, and even for
increasing access to energy in general [22]. Therefore, with rising elec-
tricity procurement costs and decreasing costs for renewables and storage,
many households could strive for energy self-sufficiency in the future [23].
The solution of a minute-based energy system model is computationally
extremely demanding. For that reason, a self-sufficient building model is
an application case with an appropriate size, on the one hand, and no
external assumptions to be made on parameters like prices on the other. As
reliability is the most challenging case for self-sufficiency, we follow a
conservative approach to quantify the impact of sub-hourly profiles. With
the implementation of a self-sufficient building model, buildings can
reduce their carbon footprint and gain control over their costs and energy
consumption. This will help in the building of a more resilient and sus-
tainable future. The remainder of this paper is as follows: Section 2 deals
with data collection, and the energy system modeling case study of self-
sufficient building. Subsequently, Section 3 discusses the results of the
case study in terms of the total annual costs and the installed capacities of
the components. Furthermore, the impact of the lost load is quantified in
this section. Finally, Section 4 presents the conclusions of this study.

2. Methods

This section presents the supply and demand time series data
considered as well as the downscaling approaches in averaging and
sampling employed (Section 2.1). Additionally, Section 2.2 considers

the case study and the associated capacity expansion equation, whereas
the sensitivity and reliability analyses are presented in Section 2.3.

2.1. Time series data and down-sampling approaches

The high-resolution global horizontal irradiance (GHI) is obtained as
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Review of the impacts of temporal resolution on energy system modeling. The table shows various articles that compare different energy system modeling, the model
type, and technologies (which represent the type of energy system considered), temporal resolutions, down-sampling methods, parameters of consideration and
conclusions that show the effect of the lowest relative to the highest resolutions considered within the parameters. For example, in Ernst and Gooday [29], the inverter
clipping losses is underestimated, whereas the performance ratio is overestimated. The abbreviated words in the table are Economic Dispatch (ED), Unit Commitment

(UQ), Photovoltaic (PV), Concentrated Solar Power (CSP), and Levelized Cost of Electricity (LCOE).

Authors Technology Model type Temporal Down-sampling Parameters Conclusions
resolutions methods
Average  Sample
Gangammanavar IEEE-RTS96 system/ ED 1 h, 30, 20, 10 ™ ™ Operational cost Underestimated
et al. [24] Illinois system min
Troy et al. [25] Irish 2020 system UC&ED 1 hto 15 min | 1. Generator cycling 1. Underestimated
2. Flexible generation 2. Underestimated
3. Storage utilization 3. Underestimated
O’Dwyer et al. [26] Plant portfolio for UC&ED 1 h to 15 min | 1. Storage plant cycling 1. Underestimated
Ireland in 2025 2. Energy storage 2. Underestimated
Lopez et al. [27] All-Island of Ireland UC&ED 1 h to 15 min | Ramping Underestimated (up to 4.5
system/ DE/AT higher)
power systems
Meybodi et al. [28] parabolic trough UC&ED 1h,30,15,5 | A more realistic view of short-term
plants min operation that can be used for
optimizing the control system
Ernst and Gooday PV plant Simulation 1 h, 30, 15, 10, ™ 1. Inverter clipping losses 1. Underestimated (0.4%
[29] 5, 1 min 2. Performance ratio to 2.2%)
2. Overestimated (1.1%)
Martin Janos Mayer Ground-mounted Techno- 1 h, 30, 15, 10, | ™ 1. LCOE 1. Underestimated (3%)
[30] photovoltaic plants economic 5, 1 min 2. Inverter sizing ratio 2. Overestimated
optimization
Deane et al. [31] Irish power system UC&ED 1h,30,15,5 | Generation cost Underestimated (1%)
min
Kazemi et al. [32] IEEE 118-bus test UC&ED 1 h, 30, 15, 10, | 1. Production costs 1. Underestimated
system 5 min 2. Reserves 2. Underestimated
Zurita et al. [33] Hybrid CSP-PV plant Simulation 1 h, 30, 15, 10, | 1. Total yearly production of the 1. Overestimated
5, 1 min hybrid plant 2. Underestimated
2. LCOE
Bistline [34] Electric sector Capacity ™ Policy analysis, electric sector Higher temporal resolution
planning and ED planning, and technology valuation is increasingly important
Keérgi et al. [35] IEEE 39-bus ucC 15, 5 min ™ Frequency fluctuations Higher temporal resolution
leads to lower frequency
fluctuations
Hofmann and PV system simulation  Simulation 1 h, 1 min ™ Inverter clipping losses Underestimated
Seckmeyer [36]
Villoz et al. [37] PV system Simulation 1h, 1 min | ™ Inverter clipping losses Underestimated (up to 5%)
Hrvoje Pandzi¢ [10] 24-bus IEEE-RTS ucC 1 h, 15 min | Operating cost Overestimated
Klokov and Off-grid systems, Optimization 5, 10, 15, 20, | 1. Energy storage charge-discharge 1. Underestimated
Loktionov [38] Alps 30 min, 1, 2, 3, cycles 2. Underestimated
4h 2. Equipment cost 3. Overestimated

3. Longest Duration of Operation
Interruption

minute-measured data [42]. For further analyses, the irradiance is
averaged over 5, 10, 15, 30, and 60 min or sampled every hour, as is
shown in Fig. 1. As the 60-minute data is ubiquitous and therefore used
by many researchers, the use of sampled irradiance data is only explored
for the 60-minute interval. The various hourly samples (60 samples
every hour) in the minute-based irradiance are holistically explored to
quantify how these affect the robustness of the energy system and obtain
the average result of these samples. Fig. 2 shows the yearly profile of the
solar irradiance, which is further analyzed to yearly duration curves for
the averaged and sampled irradiance, as shown in Fig. 3 and Fig. 4,
respectively. The irradiance at different resolutions is converted into the
capacity factor time series for energy system modeling using the direct
current photovoltaic output method of Riffonneau et al. [43].

The high resolution data capture spikes which are evened out in the
lower resolution for averaged irradiance, Fig. 3 and potentially get
retained for sampled irradiance, Fig. 4. Fig. 4 also shows an inconsistent
result for the sampling method (Sample 1 is considered), in which the
coarser profiles can either be above or below the one-minute resolution

profile. The duration curve for the sampled data depends on the order of
the sample. A day line plot for the average and sampled irradiance,
revealing how the peak irradiance values are affected at hourly and sub-
hourly resolutions are shown in Appendix A.1. Appendix A.2 also outlines
the statistical distribution of the average and sample upscaling approaches
involving the mean, median, minimum, maximum, first quartile, and third
quartile values.

The demand data (simulated) for a single-family household with two
working parents and three children (travel route set for 5 km community
distance, bus and one 30 km/hr car, charging at home with 22 kW) was
obtained using the LoadProfileGenerator by Pflugradt and Muntwyler
[44,45] and the Household Infrastructure and Building Simulator (HiSim)
for the analysis and simulation of building systems.! The LoadProfile-
Generator model is a behavioral framework based on desires and user-
defined activities called ‘affordances’. The one-minute data from the

! https://github.com/FZJ-IEK3-VSA/HiSim.
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Fig. 2. Plot of the global horizontal irradiance (GHI) for the year 2021 at the
location in Milan, Italy (lat.: 45.5028249, long.: 9.1561092).

LoadProfileGenerator and HiSim is also averaged and sampled as in the
case of the global horizontal irradiance data above.

2.2. Case study

To investigate the impact of different temporal resolutions on energy

(a)
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system modeling, a self-sufficient building is considered. The self-
sufficient building model employed in this study, as depicted in Fig. 5,
was originally developed by Kotzur et al. [46], and further expanded by
Knosala et al. [39] and Hoffmann et al. [47,48], who sought to minimize
the total annual system costs. This model aims to integrate renewable
energy (photovoltaics), efficient energy storage systems (battery, ther-
mal, hydrogen, and liquid organic hydrogen carriers), and advanced
energy management strategies to achieve the optimal utilization of re-
sources and reduce reliance on energy providers. The self-sufficient
building model considered in this study is modeled using the ETHOS.
FINE framework [40,41], the underlying equations for which are pro-
vided in Egs. (1)-(10). Appendix A.3 provides an overview of the capital,
and operational expenditures (fixed and capacity-specific) and lifetimes
of the technologies as developed by Knosala et al. [39].

In the following, we present the most important equations relating to
the capacity expansion optimization of the self-sufficient building. In
these, MY represents the subsets of the components, at which y can be
sources, sinks, converters (conv), storage (store), and commodities (g). T
is the amount of required time steps, x% is the operation rate variable,
which extends to charge (ch) and discharge (dis) as in storage, x5°C
represents the state of charge variable, x*® is the installed capacity
variable, and f is the commodity flow variable.

The objective function Eq. (1) is to minimize the total annual cost of
the system comprising the capital (CAPEX) and operational (op) ex-
penditures of the components.

min (Z (cgw + chf’[x‘;f’[) ) VeeM, teT )
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Fig. 3. (a) Yearly duration curve of the one-minute irradiance data averaged to 5, 10, 15, 30, and 60 min; (b) zoomed average duration curve.
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Fig. 4. (a) Yearly duration curve for the one-minute irradiance data sampled to 5, 10, 15, 30, and 60 min; (b) the zoomed sample duration curve.

Eq. (2) ensures a net balance of the commodities (electricity, heat,
and hydrogen).

Zfat =0

Egs. (3)-(5) ensure a commodity flow for the source, sink, and
converters, respectively. y is the conversion factor from one commodity
to another.

VceM; teT ()]

fu=X%  Vce MU O M, teT 3)
foo=—x2  VYceM™ N M, teT 4)
fee = vex& Vce M N M8, teT (5)

Eq. (6) represents the storage flow. The operational bounds for the
component are represented by Egs. (7) and (8).

fc.t — xgptdzs _ xgﬁ.ch Vce Mstore n IMg7 teT (6)
X.Z)[; >0 Ve 1\4source,xink,convAstore7 teT @
x‘c’i < xiap Ve IVIsou.rce,sink,canv7 teT (8)

The state of charge of the storage between the present and previous
time steps is represented by Eq. (9), whereas Eq. (10) defines the lower
and upper bounds of the state of charge. I] represents the efficiency.

op.dis

;1’% YceM“ teT 9
c.t

ot+l T

oC __ 0C ch ,.op,ch
xg xg.t +’7c,txg,t -

0<x% <x®  YceM™ teT (10)

The optimization models were computed on a high-performance
computing cluster using the technical specifications listed in Table 2.
Each optimization was run with the same specification to allow for an
unbiased assessment of the impact of temporal resolution on computa-
tional run time.

2.3. Sensitivity analysis and reliability assessment

In the first step, the self-sufficient building model described in Sec-
tion 2.2 was solved using the minute-resolved time series data specified
in Section 2.1. Then, we used averaging to resolve the model for pro-
gressively lower temporal resolutions (5, 10, 15, 30, and 60 min) to
quantify the impact on the device capacities and the total annual system
cost. Note that the hourly resolution is the status quo in most of the
current energy system studies.

In the second step, we quantified the impact of using hourly data on
the resulting system layout’s supply reliability. For that, a lost load
analysis was conducted using hourly data for the design optimization
and minute-level data for a validation of the operational feasibility. The
Value of Lost Load (VoLL) is the quantitative measure of electricity
customers’ willingness to pay for the security of supply [49].

Fig. 6 demonstrates the procedure to quantify the amount of lost load
and its value. For the process, the capacities obtained from the optimi-
zation results with the hourly data are maximally fixed. Then, another
optimization was run with the fixed capacities using the one-minute
data. To ensure the feasibility of the second dispatch-only
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Fig. 5. Scheme of the self-sufficient building model as presented by Knosala et al. [39]. The LOHC and rSOC represent liquid organic hydrogen carriers and reversible

solid oxide cell respectively.

Table 2

Computational resources used for the optimization runs.
Parameter Specifications
CPU-per-task (cores) 8
Nodes 1
Memory-per-CPU (GB) 32,000
Threads 32
Read access memory (GB) 256

optimization, an auxiliary electricity source was added to the system,
which provides power during the outage hours (only theoretically), i.e.,
at times when the design based on hourly data would be infeasible for

1. Capacity expansion and dispatch
optimization
Device capacities: variable
Temporal resolution: 8760 hours
Auxiliary electricity source: none

2. Dispatch optimization

Device capacities: fixed (taken from step 1.)
Temporal resolution: 525600 minutes
Auxiliary electricity source: 10 €/kWh

3. Quantification of the impact of hourly
modeling on reliability and costs of the energy
system

Fig. 6. Process of sequential optimizations with variable and fixed capacities
for quantifying the lost loads of different system designs.

the minute-resolved data. Throughout this process, it can be checked if
the optimization results from the hourly data provide a feasible design
for the minute-level data, i.e., real-world conditions. In reality, the
auxiliary source would not exist, in that the electricity provided by the
auxiliary source would equal the unmet demand (i.e., the lost load) in
the real model. These unmet demands can then be mitigated by imple-
menting demand-side management strategies like peak shavings and
real-time pricing. Smart metering technology can also play a crucial role
by offering detailed consumption data, enabling consumers to adjust
their usage during the peak periods.

The estimation of the VoLL in a residential context is based on uti-
lizing a macroeconomics approach and often lies between €10 and €25/
kWh, whereas the maximum VoLL in terms of consumer willingness to
pay surveys is typically around €10/kWh, as presented by Schroder and
Kuckshinrichs [50] and Gorman [49]. Therefore, a VoLL of €10/kWh is
assigned as the electricity price provided by the auxiliary source. Note
that this price is much higher than the system’s levelized cost of elec-
tricity, and so the auxiliary source only provides electricity at times
when the system would otherwise be infeasible.

Following the reliability test through the VoLL, we assess the ques-
tion of whether more reliable system designs can be derived by means of
equidistant sampling instead of averaging in Section 3.3.

3. Results and discussion

This section describes the layout for varying the temporal resolution
of the averaging method in Section 3.1, as well as the impact of lost load
(Section 3.2) to access the reliability of the hourly resolution. In Section
3.3, the results of the different samples are described, whereas Section
3.4 presents a discussion of the analyses.
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Results for the self-sufficient building model comprising the total annual cost (TAC), capacities for photovoltaic (PV), the inverter and all considered storage types
(battery, liquid organic hydrogen carriers, hydrogen, thermal), as well as the computational time using averaging.

Time step TAC (€) Inverter PV Battery LOHC Storage H2 Storage Thermal Storage Computing time (min)
length (min) (kWe1) (kW) (kWe1) (kWr2) (kW) (kWheat)
60 3677.28 5.114 14.895 7.277 5526.98 34.049 6.983 4.78
30 3695.93 6.592 14.992 7.340 5518.75 34.544 7.151 19.61
15 3709.54 7.628 14.950 7.591 5529.71 34.440 7.021 64.37
10 3716.9 8.282 14.983 7.556 5528.44 34.569 7.034 227.80
5 3723.45 8.864 14.972 7.628 5533.23 34.606 6.988 666.10
1 3740.11 10.673 14.971 7.702 5539.21 34.659 6.837 2354.07
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Fig. 7. The total cost and computational time of different temporal resolutions.
12 - 7.80 ~
[ ]
10 A 7.70 A [ ]
§ ot g y
= 8 1 P~ = 7.60 A PY
2 > L
.g pe £
T 61 % 7.50 +
S e o]
—
L 4 E 7.40
@ =
> ®©
£ m o
2 1 7.30 A
[
0 T T T T T | 7.20 T T T T T |

60 50 40 30 20 10 0
Time steps (mins)

(a)

60 50 40 30 20 10 0
Time steps (mins)

(b)

Fig. 8. The inverter (a) and battery (b) capacities for different temporal resolutions.

3.1. Layouts for varying temporal resolutions (Averaging)

First, we compare the results of the self-sufficient building model
using the input data at one, then averaged over 5-, 10-, 15-, 30-, and 60-
minute resolutions to examine the impact of sub-hourly resolutions on
total annual cost, installed capacities, and computational runtimes. The
results are summarized in Table 3.

Table 3 shows some significant variations in the results obtained

using the average hourly resolution, sub-hourly averaged, and fully
resolved minute-resolution data. The total annual cost of the building
increases from €3677.3 to €3740.1 between the hourly and minute-
resolved data, leading to a cost underestimation of 1.7% for hourly
resolution. However, a major drawback of the sub-hourly resolution
other than the dearth of sub-hourly data is the computational
complexity (see Fig. 7). The computational runtime increases expo-
nentially with the temporal resolution considered. Furthermore, the
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Table 4
Results of the lost load analysis.
Parameter Value
VoLL (€/kWh) 10.0
Amount of lost load (kWh) 89.4
Percentage of cost inc. (%) 24.3
5000 1 4571
17
S
- 3000 -
N Hourl
= = Hourly
g 2000 - Minutely
<
I
© 1000 A
0 -

Total cost without VOLL Total cost with VOLL

Fig. 9. Difference between the total annual costs in optimizations with hourly-
and minute-resolved data, as well as with and without considering the VoLL).

inverter and battery sizes both increased with higher temporal resolu-
tions (see Fig. 8). The battery size increased from hourly to minutes from
7.277 kWe to 7.702 kWe; (+6%). Even more so, the inverter size doubles
when using minute-based data, which is due to the omission of intra-
hourly extreme values in the demand and supply data when using
hourly-averaged profiles. The inverter is most severely affected by this
effect because it is a bottleneck between the supply side with the
photovoltaic panels and the demand side with heat and electricity
demands.

3.2. Value of lost load

The exponential growth of computational complexity as shown in
Fig. 7, as well as a lack of data availability, leads to the fact that sub-
hourly optimization is still an exception in capacity expansion plan-
ning. However, as will be shown in the following, the ubiquitous hourly
data is not sufficient for accurate energy system modeling in the case of a
self-sufficient system. To quantify the impact on system reliability, the
optimization results with hourly data are fixed assuming a setup with
the results obtained through this. Then, a highly resolved profile in one
minute is fed as input data into the system, rendering the system opti-
mization infeasible. This owes significantly to the inverter and storage
sizes that are underestimated as analyzed in the preceding section. For
security of supply, a theoretical auxiliary electricity supply is added to
the system, whose supply is associated with a penalty cost in the form of
the VoLL. Table 4 shows the results obtained from the analysis.

Although an underestimation of 1.7% in total annual costs occurs
between the hourly and minute-based optimization run, it is not advis-
able to model off-grid systems using hourly resolutions (see Fig. 9).
Beyond the 1.7% cost increase, it does not guarantee a reliable power
supply, as there is 89.4 kWh of unserved demand, which will lead to
hours of annual power outages. If the VoLL of €10/kWh is taken into
account, the total annual cost for the energy supply would increase by
24%. While electricity can be purchased from the grid to buffer for the
hours of lost load in several systems that are not self-sufficient (i.e., with
grid connections), a self-sufficient building should be modeled at a much
higher resolution, or account for the cost-underestimating tendency of
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hourly-resolved data by means of safety factors.
3.3. Under- and overestimation of component sizes

The averaging of the input parameters evens out the extreme values,
which triggers an underestimation of equipment capacity, most severely
affecting those components with highly dynamic operational behavior,
such as inverter and battery. These dynamic components act as a bridge
between the supply and the demand sides of the energy system. As is
shown in Table 1, some researchers opted for sampling equidistant
values from the original dataset instead of averaging. The results for the
components that changed significantly along with the impact on total
annual costs are shown in Fig. 10. The sampled data is distributed as
single points to show that it can either underestimate or overestimate
the cost and installed capacities of the system, depending on the starting
point of the sample. Concretely, when sampling hourly values from
minute-based data, one can either use the value of every first, second,
third, and up to sixtieth minute of each hour, yielding 60 different
samples in total (as is shown in Fig. 1).

The average of all 60 model runs with sampling provides an over-
estimate with respect to the total system costs. Furthermore, it can be
observed that the sampling generally underestimates the inverter size,
but by far not as severely as the averaging method. Overall, at least the
average design obtained with sampling is deemed more reliable to
model energy systems at the minute resolution level than averaging the
input data.

The averaging method, even though not reliable, is associated with a
lower computational runtime and underestimates the results. The sam-
pling method either underestimates or overestimates the system’s cost
and installed capacities with energy reliability (depending on the sam-
pling points), but is also much less complex than the fully-resolved
minute resolutions. Sampling plus averaging (at which the average of
the sampled results is taken) mostly provides a more reliable result and
similar computational complexity as averaging.

3.4. Discussion

A plethora of literature has discussed the importance of sub-hourly
resolutions in energy system modeling and the deficiency in the hour-
ly models as shown in Table 1. However, many studies consider large
systems from district to national, and to the best of the authors’
knowledge, an assessment of the impact on self-sufficient residential
buildings is missing. Energy self-sufficient buildings are constantly
gaining momentum with rising electricity costs and the decrease in the
costs of renewables and storage [23]. As a result of this, self-sufficient
buildings could then become part of the defossilization process, as
many houses might strive for self-sufficiency in the future [23]. None-
theless, the common hourly resolution modeling may not be sufficient
for such a conservative energy system as that shown in Table 3, with
data averaging also commonly used. While an underestimation of 1%
was concluded in the generation cost of the Irish power system by Deane
etal. [31] between 1-hour and 5-minute resolutions, our studies found a
similar result and even an underestimation of 1.7% between the hourly
and minute resolutions for the total annual cost. It can be inferred from
Table 3 and Fig. 7 that a cost underestimation and computational rise
from €3677 to €3723 (1.2%) and 4.8 to 666.1 min (a factor of 140),
respectively, occurred between the hourly and 5-minute resolutions.
Similarly, a cost underestimation and computational rise from €3677 to
€3740 (1.7%) and 4.8 to 2354.1 min (a factor of 493), respectively,
occurred between the hourly and 1-minute resolutions. A compromise of
5-minute-resolution modeling can be concluded between the accuracy
and computational complexities. Moreover, the total annual cost un-
derestimation only illuminates a limited facet of the issue, whereas a
broader one is associated with reliability, especially in a self-sufficient
energy system. With respect to that, the hourly resolution systems suf-
fer a loss of up to 89.4kWh annually (electricity and heat). With the
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VoLL of 10 €/kWh, this raises the actual cost underestimation between
the hourly and minute resolutions to 24.3% (Table 4 and Fig. 9).
Additionally, the non-reliability that arises from the non-feasibility of
the system arises from the underestimated system capacity (Table 3 and
Fig. 8). The inverter, which is the bridge between the demand and
supply from the photovoltaic panels, as well as the battery shows un-
derestimations because the peak power from the irradiation and peak
demands have been averaged out in the hourly resolution, thereby not
capturing the intra-hour variations. Thus, during peak demand periods,
the systems’ capacities are not sufficient to buffer such arbitrage. These
underestimated capacities reduce the associated costs for the compo-
nents, thereby underestimating the total annualized cost.

As averaging minimizes the maxima, this leads to an underestima-
tion. Studies are then carried out on hourly point sampling with one-
minute resolutions as a reference, as is shown in Fig. 1. It can be infer-
red that sampling 60 points between hours provides either an underes-
timation or overestimation of the system’s costs and capacities
depending on the sampling points, as depicted in Fig. 10. As the sam-
pling points that accurately give the solution cannot be deciphered in
advance, the average of the solutions from the samples is taken (Fig. 10),
as assumed by Villoz et al. [37] as an alternative to solving complicated
minute resolution problems. This indicates an overestimation of the
total annualized cost (1.8%) and some of the systems’ capacities
(Fig. 10), which also does not provide an accurate solution. However,
the dynamic components are less biased and the problem is less
complicated, as this can solve at approximately the computational
runtime of the hourly average resolutions with parallel calculation on
the high performance computing cluster.

As is made evident in this study, it is pertinent to model self-sufficient
energy systems, that rely on intermittent renewable energy sources,
using high-resolution data such as minute by minute data. This helps to
both capture accurate cost approximations and dynamic component
sizing in the design of future energy systems with high shares of inter-
mittent renewable sources. The relevance of temporal resolution dis-
cussed in this work can help increase the accuracy of modeled energy
systems, and is also a pivotal tool towards a more sustainable future.
Although this study offers useful insights into the modeling of an energy
system considering a self-sufficient building, it is limited to a single
location in Europe. Future work could therefore focus on modeling
multiple locations covering the Koppen-Geiger weather climate and
developing models for reducing the computational expenses of minute
resolutions. To address the huge computational cost of fully-resolved
models, future research could focus on advanced temporal aggregation
methods such as K-centroid, K-medoid, and hierarchical clustering to
reduce the exponential time while maintaining some substantial levels
of accuracy [3,47,48,51-53]. Additionally, future research could also
focus on methods to increase the temporal resolution of intermittent
renewable energy sources on a global scale.

4. Conclusions

In the context of energy system modeling, the right level of detail is a
crucial aspect for obtaining computationally-reasonable and sufficiently
accurate results. This study reveals the considerable impact of the
temporal input data resolution on the cost-optimal system design of a
self-sufficient European building in the year 2030. As the temporal
resolution varies between 1, 5, 10, 15, 30, and 60 min in this case study,
the impact on the system cost and design becomes increasingly evident.
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Averaged hourly data underestimated the total annual cost by 1.7%
compared to minutely-resolved data, whereas the inverter size was
underestimated by 50% and the battery capacity by 5.5%. This indicates
that especially for domestic electrical sub-systems and reliability as-
sessments, hourly resolutions do not necessarily suffice. Accounting for
the amount of lost load with hourly compared to minute-resolved
optimization, while assuming €10/kWh as the VoLL, leads to an in-
crease of 24% in the total system costs.

Another method based on regular sampling (i.e., taking every 60th
value of the original time series) was used for comparing the hourly- and
minute-resolved optimizations. The results with sampling show unpre-
dictable behavior with respect to the tendency of either underestimating
or overestimating system costs. Sampling yields better results with
respect to the sizing of the inverter, i.e., highly dynamically-operated
components are less biased. In energy system modeling, especially in
scenarios in which conservative designs are paramount, as in the case of
self-sufficient buildings, sole reliance on hourly resolutions may prove
inadequate. Hence, there exists a pressing need to transition towards
finer-resolution modeling, encompassing sub-hourly intervals, even
down to one-minute resolutions. While the importance of temporal
resolution is relevant in the context of reliability and rentability, the
computational runtime of energy system optimizations between 60 and
one minute increased exponentially by a factor of roughly 500. The
increased computational runtime is one of the drawbacks of sub-hourly
modeling. Nevertheless, a complexity management approach in the form
of temporal aggregation could help reduce the complexity while main-
taining good accuracy in future research. Another drawback of sub-
hourly modeling that could be further improved is the availability of
minute-resolved input datasets. If available, our analysis could be
replicated in further locations in other countries around the world.
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Appendix A

A.1. A day line plot of 1, 5, 10, 15, 30, and 60 min with average (top figure) and sampled data (bottom).
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A.2. Statistical description of the averaging and sampling/up-sampling approaches for the solar irradiance data.

1 min Average Sample

5 min 10 min 15 min 30 min 60 min 5 min 10 min 15 min 30 min 60 min
Mean 162.71 162.71 162.71 162.71 162.71 162.71 162.64 162.69 162.75 162.6 162.7
Min. 0 0 0 0 0 0 0 0 0 0 0
First quartile 0 0 0 0 0 0 0 0 0 0 0
Median 4 4.4 4.6 4.73 5.1 7.15 4 4 4 4 5
Third quartile 241 245 246.83 249.4 253.38 251.28 241 241 242 241 242.25
Max 1199 1126.8 1104.4 1068.27 1050.33 1024.6 1195 1159 1163 1157 1110
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A.3. Cost parameters of the self-sufficient building model according to Knosala et al. [39]

Components Capacity-specific

Fixed+cap

specific (%

Fixed (€)
acity-
inv/a)

— 4000.00 €/kW, 1.00
Photovoltaic — 769.00 €/kW, 1.00
rooftop

— 75.00 €/kW, —

= 301.00 €/kWh, —
GEVEERAIR  5000.00 2400.00 €/kWe| 1.00
Oxide Cell

423000 50490  €/kWi 1.50
Thermal — 90.00 €/kWhq, 0.01
storage
E-Heater & e- &g 60.00 €/kWn 2.00
boiler
Dibenzyltoluen — 1.25 €/kWhy —
e
Hydrog: — 15.00 €/kWhy —
vessels
Hydrogenizer 2123.30 761.10 €/kWy, 1.00
1140.00  408.60  €/kWi, 1.00

Low-pressure — 1716.71 €/kW, 1.00
compressor
High-pressure 560.00 1329.80  €/kW, 1.00

compressors
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