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A B S T R A C T

The analysis of empirical data through model-free inequalities leads to the conclusion that
violations of Bell-type inequalities by empirical data cannot have any significance unless one
believes that the universe operates according to the rules of a mathematical model.

. Introduction

The issue of ‘‘violation of Bell inequalities’’ is at the center of many heated discussions about the foundations and interpretations
f quantum physics. The huge interest in the subject is reflected by the award of the Nobel Prize in physics 2022 ‘‘for experiments
ith entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science’’. Remarkably
nd surprisingly, there is still no consensus about what such violations actually imply [1–50].

Recently, we presented new model-free inequalities that reduce to Bell-like inequalities1 in a very special case [53]. These
nequalities put constraints on certain linear combinations of correlations of the (two-valued) data and, very importantly, are
ndependent of the model that one imagines to have produced the data. In this paper, we add a new model-free inequality to the
amily of model-free inequalities presented in Ref. [53] and use the new inequality to analyze foreign exchange data. The model-
ndependent character of the inequalities that we derive, and not the Bell-type inequalities themselves, provide the appropriate
ackground for discussing the ‘‘implications’’ (whatever they are) of violations of Bell-type inequalities by empirical data. An
mportant point of these model-free inequalities is that their derivation only exploits elementary arithmetic properties of the data
ets and do not refer to physics at all. They equally apply to any kind of discrete data [53].

Relating these model-free inequalities to physics involves making additional assumptions about the model that one imagines to
ave produced the data. We scrutinize the latter, subtle point by analyzing data of ‘‘non-physical’’ origin, namely, publicly available
oreign exchange data [54], see Section 2.

In Section 3, we present a new model-free inequality involving only three correlations and in Section 4 we use the foreign
xchange data to search for violations of the Bell-type inequality for empirical data, obtained as a special case of the model-free
nequality. The main conclusion of this analysis is the following (see Section 4 for a detailed account). Computing correlations
y considering the whole data set, elementary arithmetic dictates that there can be no violation of the Boole inequality [55], a
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1 We use this term to refer to Bell’s inequality involving three correlations [1], the Clauser–Horn–Shimony–Holt (CHSH) [51], Clauser–Horn [52], and all
ther inequalities that directly follow from Bell’s model for the EPRB thought experiment.
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predecessor of the Bell inequality involving three correlations [1,56]. However, dividing (with respect to the time of the transactions)
the data set in three equal parts, the Boole–Bell inequality can be violated (but the corresponding model-free inequality cannot).
Clearly, the observed violation merely reflects our choice of selecting data rather than the ‘‘reality’’ which, in the present example,
is the complete data set. The observation that, depending on the grouping of foreign exchange data, the analysis can lead to very
different conclusions (e.g., violation versus no violation), is reminiscent of Simpson’s paradox [57]. In this case, the word ‘‘paradox’’
does not mean that there is a contradiction involved but rather emphasizes that viewing the same data in different ways can lead
to very different conclusions.

All the Einstein–Podolsky–Rosen–Bohm (EPRB) laboratory experiments reporting violations of Bell-type inequalities that we are
aware of employ at least one mechanism for selecting the data from which the correlations are computed. Thus, potentially they all
fall victim to Simpson’s paradox. Most EPRB experiments [58–63] use time-coincidence windows to select pairs of photons. Other
EPRB experiments [64–66] use voltage thresholds to classify a detection event as being the arrival of a photon or as something
else. The sets of empirical data thus obtained can never violate the model-free inequalities [53]. Furthermore, unless all the cited
experiments generate these data such that they can be reshuffled to form triples and quadruples (which is extremely unlikely), there
is no mathematically sound argument why these experimental data should satisfy any of the Bell-type inequalities [53]. As in the
case of the foreign exchange data, a violation of Bell-type inequalities by experimental data merely reflects the properties of the
process, chosen by the experimenter, to select groups of data, not an intrinsic property of the data themselves. For instance, the
violation of the CHSH inequality by the data of the EPRB experiment by Weihs et al. [62] smoothly changes into a non-violation by
increasing the time coincidence window (see Fig. 5 in Ref. [53]), a clear case of conclusions depending on viewing the same data
differently, recall Simpson’s paradox. For a discussion of the physics aspects of this phenomenon, see section 9 in Ref. [53].

The preceding discussion is ‘‘model-free’’. Within this framework, one can only prove Bell-type inequalities if the data
satisfies what Boole called ‘‘conditions of possible experience’’ [55], that is if the data derives, without reshuffling, from triples,
quadruples [17], etc., conditions which are highly unlikely to be satisfied in any EPRB laboratory experiment (but easily satisfied in
computer experiments). Clearly, in the absence of a proof that Bell-type inequalities exist for general empirical data, no conclusion
can be drawn from a violation of one of them.

For violations of Bell-type inequalities by experimental data to have any relevance for physics, it is essential to introduce models
that one imagines to be able to produce the data and derive inequalities from these models. The simplest but fairly general model
for EPRB experiments is undoubtedly the one introduced by Bell [1,56]. Bell’s model almost trivially yields Bell-type inequalities
which are used to prove Bell’s theorem [56], stating that Bell’s model can never reproduce the full functional form of the correlation
of a quantum system in the singlet state (see sections 5 and 6). As discussed in Section 5, Bell’s theorem is very important for the
foundations of quantum theory.

However, as explained in Section 7, these Bell-type inequalities are derived within a particular mathematical model (Bell’s model)
and therefore a violation of one or more of them by empirical data only implies that this model cannot serve as a description of
the data, as in the case of our example of the foreign exchange data.

In summary, feeding empirical data from any experiment into a Bell-type inequality and observing a violation only implies that
Bell’s model does not apply to the case at hand. In particular, the conclusions must be that Bell’s model fails to describe how the
data of actual EPRB experiments are collected and analyzed and that it is necessary to develop other, better models. As a matter of
fact, a straightforward extension of Bell’s model which accounts for the data selection process can, in the appropriate limit, exactly
reproduce the results of a quantum system in the singlet state (see Ref. [53], section 11.5 and references therein). Other conclusions
than the two just mentioned constitute logical fallacies, see Section 8.

2. Analysis of foreign exchange rates

The reader may wonder why the publicly available foreign exchange data are going to be analyzed by the procedure described
in this section. Comparing this procedure to the one used to analyze data obtained by performing EPRB experiments, see
Ref. [53](section 3) for a detailed explanation, it becomes clear that these two procedures are the same. However, there is no
need to be familiar with these experiments to understand this procedure and the conclusions drawn from it. All that is necessary to
know now is that changes of the exchange rates have to be digitized (means mapped onto ±1) and that the quantities of interest
are the correlations between the two-valued representation of changes in different exchange rates.

The raw data set contains the exchange rates of the currencies of twenty-two different countries relative to the US Dollar, starting
on 3 January 2000 and ending on 31 December 2019 [54]. On some days (e.g. Christmas) there is no trading and therefore also no
data. After removing the ‘‘no data’’ records, the data set contains 5015 records of twenty-two foreign exchange rates.

In detail, the procedure to calculate correlations is as follows.

1. Read the raw ratio data from the file Foreign_Exchange_Rates.csv (downloadable here), skipping the ‘‘no data’’ records and
store the floating point data in an array of dimensions (5015,22).

2. Compute the forward (in time, that is record-wise) differences of these ratios and store the floating point results in an array
of dimensions (5014,22).

3. Store the sign of all these differences in an integer array of dimensions (5014,22) as values ±1. These data will be referred
to as foreign exchange data in the following.

4. Divide the ±1 data set into three equal parts of 𝑁 = 1671 records (dropping one record), and denote the parts by 𝑠 where
2

the subscript 𝑠 = 1, 2, 3 labels the data set and the data contained in them.
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5. Compute the correlations

𝐶𝑠(𝐴,𝐵) =
1
𝑁

𝑁
∑

𝑖=1
𝐴𝑠,𝑖𝐵𝑠,𝑖 , (1)

where 𝐴 and 𝐵 each symbolize one of the twenty-two currencies and 𝐴𝑠,𝑖 = ±1, 𝐵𝑠,𝑖 = ±1. Excluding the trivial correlation
𝐶𝑠(𝐴,𝐴) = 1 and noting that 𝐶𝑠(𝐴,𝐵) = 𝐶𝑠(𝐵,𝐴) for 𝑠 = 1, 2, 3, this procedure yields 3 × 21× 22∕2 = 693 different correlations.

3. Model-free inequalities

The prime focus of this paper is on the conclusions that can be drawn from violations of inequalities on certain linear
combinations of the correlations 𝐶𝑠(𝐴,𝐵), 𝐶𝑠′ (𝐴′, 𝐵′), etc. As explained next, without knowing the actual values of these correlations
or without assuming a particular model for the process that generates the data, elementary arithmetic alone already yields nontrivial
inequalities that can never be violated by data.

As the 𝐶𝑠(𝐴,𝐵)’s are averages of ±1 values, it follows immediately that −1 ≤ 𝐶𝑠(𝐴,𝐵) ≤ 1 for 𝑠 = 1, 2, 3 and all pairs (𝐴,𝐵)
of currencies. Then, obviously, −2 ≤ 𝐶𝑠(𝐴,𝐵) + 𝐶𝑠′ (𝐴′, 𝐵′) ≤ 2 where (𝐴,𝐵) and (𝐴′, 𝐵′) denote any two pairs of currencies and
𝑠, 𝑠′ = 1, 2, 3. Then what about 𝐶1(𝐴,𝐵) + 𝐶2(𝐴′, 𝐵′) + 𝐶3(𝐴′′, 𝐵′′), for instance?

Let (𝑥, 𝑦, 𝑥′, 𝑦′, 𝑥′′, 𝑦′′) stand for any of the sextuples (𝐴1,𝑖, 𝐵1,𝑖, 𝐴′
2,𝑖, 𝐵

′
2,𝑖, 𝐴

′′
3,𝑖, 𝐵

′′
3,𝑖). If 𝑥, 𝑦, 𝑥′, 𝑦′, 𝑥′′, 𝑦′′ = ±1 it follows immediately

that −3 ≤ 𝑥𝑦 + 𝑥′𝑦′ + 𝑥′′𝑦′′ ≤ 3 and therefore, −3 ≤ 𝐶1(𝐴,𝐵) + 𝐶2(𝐴′, 𝐵′) + 𝐶3(𝐴′′, 𝐵′′) ≤ 3. But can one find stricter bounds?
Recall that a basic property of a sum of numbers is that the order in which the numbers are added is irrelevant. This elementary

arithmetic fact and this fact alone can reduce the values of contributions to 𝐶1(𝐴,𝐵) + 𝐶2(𝐴′, 𝐵′) + 𝐶3(𝐴′′, 𝐵′′). To see this, use the
freedom to reshuffle the contributions to 𝐶2(𝐴′, 𝐵′) and 𝐶3(𝐴′′, 𝐵′′) and consider the expression 𝐴1,𝑖 𝐵1,𝑖+𝐴′

2,𝑗 𝐵
′
2,𝑗 +𝐴′′

3,𝑘 𝐵
′′
3,𝑘. Further

assume that for a given 𝑖, it is possible to find at least one pair (𝑗, 𝑘) such that 𝐴′
2,𝑗 = 𝐴1,𝑖, 𝐵′

2,𝑗 = 𝐵′′
3,𝑘 and 𝐴′′

3,𝑘 = 𝐵1,𝑖. In this
particular case, the sextuple (𝐴1,𝑖, 𝐵1,𝑖, 𝐴′

2,𝑗 , 𝐵
′
2,𝑘, 𝐴

′′
3,𝑘, 𝐵

′′
3,𝑘) derives from the triple (𝑥 = 𝐴1,𝑖, 𝑦 = 𝐵1,𝑖, 𝑧 = 𝐵′

2,𝑗 ) and its contribution to
𝐶1(𝐴,𝐵) + 𝐶2(𝐴′, 𝐵′) + 𝐶3(𝐴′′, 𝐵′′) is given by 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧. It is easy to verify that −1 ≤ 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 ≤ 3 by considering all eight
combinations of 𝑥, 𝑦, 𝑧 = ±1. Thus, if by reshuffling the data it becomes possible to reduce sextuples to triples, the contributions of
sextuples is bounded from below by minus one instead of minus three. In other words, reshuffling can reduce the contributions to
linear combinations of the three correlations.

By a straightforward extension of the proof given in Ref. [53](appendix B), we can prove that in general

|𝐶1(𝐴,𝐵) ± 𝐶2(𝐴′, 𝐵′)| ≤ 3 − 2𝛤 ± 𝐶3(𝐴′′, 𝐵′′) , (2)

or, equivalently

|𝐶1(𝐴,𝐵) ± 𝐶2(𝐴′, 𝐵′)| ∓ 𝐶3(𝐴′′, 𝐵′′) − 1 ≤ 2(1 − 𝛤 ) , (3)

where 𝛤 denotes the maximum fraction of triples that one can identify by reshuffling the data in 𝑠 with 𝑠 = 2, 3. 𝛤 can be
computed by a slightly modified version of the procedure described in Ref. [53](appendix B). Note that Eq. (2) is equivalent to
|𝐶1(𝐴,𝐵) ± 𝐶3(𝐴′′, 𝐵′′)| ≤ 3 − 2𝛤 ± 𝐶2(𝐴′, 𝐵′) or |𝐶3(𝐴′′, 𝐵′′) ± 𝐶2(𝐴′, 𝐵′)| ≤ 3 − 2𝛤 ± 𝐶1(𝐴,𝐵), which follow directly from Eq. (N.6)
in Ref. [53].

If and only if all the 𝑁 pairs of records in the three data sets 1, 2, and 3 can be reshuffled to create 𝑁 triples, the fraction
of triples 𝛤 = 1. In this particular case, Eq. (2) takes the form of the Boole inequality [55]

|𝐶1(𝐴,𝐵) ± 𝐶2(𝐴,𝐵′)| ≤ 1 ± 𝐶3(𝐵,𝐵′) , (4)

written here in a different but equivalent form than Boole did.
The inequality Eq. (2) (for 0 ≤ 𝛤 ≤ 1) holds for any set of sextuples  = {(𝐴1,𝑖, 𝐵1,𝑖, 𝐴′

2,𝑖, 𝐵
′
2,𝑖, 𝐴

′′
3,𝑖, 𝐵

′′
3,𝑖) ∣ 𝑖 = 1,… , 𝑁}, irrespective

of how the data was obtained or generated. It is therefore model free, meaning that inequality Eq. (2) holds for data, regardless of
any imaginary model that is believed to have produced these data. Model-free inequalities, involving four correlations and reducing
to the Clauser–Horn–Shimony–Holt [52,56] and Clauser–Horn [51] inequalities in the exceptional case that all octuples of data can
be reshuffled to form quadruples, are given in Ref. [53].

4. Application of the model-free inequalities to the foreign exchange data

It is clear that Eq. (2), being the result of basic arithmetic only, can never be violated if 𝛤 is chosen as defined. With regard to
Bell-type inequalities, to be discussed in Section 7, the main question of interest is ‘‘can certain combinations of the foreign exchange
data violate Eq. (2) with 𝛤 = 1?’’ Note that if these data were uniformly random, 𝛤 = 1 up to statistical fluctuations. The proof of
this fact is similar to the one given in Ref. [53](appendix B).

Computing the pairwise correlations of all foreign exchange rates according to the procedure outlined in Section 2, there are 85
out of 18480 possible combinations of triples of foreign currencies that violate at least one of Bell-like inequalities

|𝐶1(𝐴,𝐵) ± 𝐶2(𝐴,𝐶)| ∓ 𝐶3(𝐵,𝐶) − 1 ≤ 0 . (5)

The maximum value of |𝐶1(𝐴,𝐵) + 𝐶2(𝐴,𝐶)|−𝐶3(𝐵,𝐶)−1 = 0.17 with 𝐴 representing the Euro, 𝐵 the Swiss Franc, and 𝐶 the Danish
Krone. The average values of the 𝐴’s, 𝐵’s, and 𝐶 ’s are at most 0.012, and 𝐶 (𝐴,𝐵) = 0.80, 𝐶 (𝐴,𝐶) = 0.96, and 𝐶 (𝐵,𝐶) = 0.59.
3

1 2 3
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Calculating the maximum number of triples by solving the minimization problem by a slightly modified version of the procedure
described in Ref. [53](appendix B) yields 2(1 −𝛤 ) = 0.17, not only in agreement with Eq. (2) (with the plus sign) but also signaling
hat the left hand side of Eq. (3) is equal to the bound 2(1 − 𝛤 ).

The maximum value of |𝐶1(𝐴,𝐵) − 𝐶2(𝐴,𝐶)|+𝐶3(𝐵,𝐶) − 1 = 0.23 where in this case, 𝐴 represents the Mexican Peso, 𝐵 the Euro,
and 𝐶 the Danish Krone. The average values of the 𝐴’s, 𝐵’s, and 𝐶 ’s are at most 0.021, 𝐶1(𝐴,𝐵) = −0.039, 𝐶2(𝐴,𝐶) = 0.25, and
𝐶3(𝐵,𝐶) = 0.94. Also in this case, the value of the left hand side of Eq. (3) (with the minus sign) is the same as 2(1 − 𝛤 ) = 0.23.

If, for simplicity, it is assumed that the standard deviation on the correlations is approximately given by 1∕2
√

𝑁 = 1∕2
√

1671 ≈
0.012, the foreign exchange data shows violations of more than 10 standard deviations in the two cases mentioned earlier.

Finally, it should be mentioned that using 𝐶(𝐴,𝐵) = (3𝑁)−1
∑3

𝑠=1
∑𝑁

𝑖=1 𝐴𝑠,𝑖𝐵𝑠,𝑖 to compute the correlations (that is without
breaking up each of the whole data sets in three parts), and repeating the analysis never produces violations of |𝐶(𝐴,𝐵) ± 𝐶(𝐴,𝐶)|∓
𝐶(𝐵,𝐶) − 1 ≤ 0. This is to be expected because in this case, the data for the 𝐴’s, 𝐵’s, and 𝐶 ’s form triples (𝛤 = 1) and then, as
lready shown by Boole [55], there can be no violation.

. Mathematical models: importance of Bell’s theorem

In brief, Bell proposed to model the correlations of an EPRB thought experiment by [56,67]

(𝐚,𝐛) = ∫ 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)𝜇(𝜆) 𝑑𝜆 , |𝐴(𝐚, 𝜆)| ≤ 1 , |𝐵(𝐛, 𝜆)| ≤ 1 , 0 ≤ 𝜇(𝜆) , ∫ 𝜇(𝜆) 𝑑𝜆 = 1 , (6)

where 𝐴(𝐚, 𝜆) and 𝐵(𝐛, 𝜆) are mathematical functions of the conditions 𝐚 and 𝐛, respectively, and the common variable 𝜆 denoting
an arbitrary set of ‘‘hidden’’ variables. Bell gave a proof that (𝐚,𝐛) cannot arbitrarily closely approximate the correlation −𝐚 ⋅ 𝐛 for
ll unit vectors 𝐚 and 𝐛 [1]. According to Bell himself (see Ref. [56] (p.65)), this is the theorem.
Within the universe of mathematical models, Bell’s theorem is of great importance. Apparently not well-known seems to be

he fact that the theorem excludes a probabilistic description of the Stern–Gerlach experiment with spin-1/2 particles in terms of
he model Eq. (6) [53]. In this particular case, the quantum-theoretical description goes in terms of a single particle. Therefore all
mplications pertaining to physics, other than the one just mentioned, drawn from a violation of a Bell-type inequalities become
oid. Very well-known is the fact that the theorem excludes all models of the type Eq. (6) as possible candidates for describing a
uantum system of two spin-1/2 objects for which in a certain case (𝐚,𝐛) = −𝐚 ⋅ 𝐛. By far the most important general consequence
f Bell’s theorem is that there is no hope for recovering all the results of quantum theory by expressions of the kind Eq. (6), that
s by averaging (the integration over 𝜆 with probability density 𝜇(𝜆)) over an ensemble of ‘‘classical’’ physics models formulated in
erms of scalar functions with values in the interval [−1,+1].

Eq. (6) generalizes the idea of separation of variables, that is the idea that a scalar function of two variables (𝐚 and 𝐛) can, in
articular cases, be written as (the integral over) a product of scalar functions, each of which depend on one of these variables only.
ithin the universe of mathematical models, there is absolutely no valid argument for restricting the search for models yielding

orrelations (𝐚,𝐛) = −𝐚 ⋅𝐛 to the domain of models formulated in terms of scalar functions (as in Eq. (6)). In fact, as is well-known,
uantum theory provides such a separated model in terms of Pauli spin matrices [53]. Moreover, with a suitable definition of the
otion of locality, the quantum-theoretical model can also be argued to exhibit locality [68–71]. Another possibility is to resort to
on-Diophantine arithmetics [72].

. Mathematical models: implications of violating Bell-type inequalities

From Eq. (6), |𝑎𝑐 ± 𝑎𝑐| ≤ 1 ± 𝑏𝑐 for −1 ≤ 𝑎, 𝑏, 𝑐 ≤ 1, and the application of the triangle inequality, it follows directly that

|(𝐚,𝐛) ± (𝐚, 𝐜)| ≤ 1 ± ′(𝐛, 𝐜) , (7)

here

′(𝐛, 𝐜) = ∫ 𝐵(𝐛, 𝜆)𝐵(𝐜, 𝜆)𝜇(𝜆) 𝑑𝜆 . (8)

Inequality (7) will be referred to as a Boole–Bell inequality. Key arguments in Bell’s original proof of his theorem are the assumption
of perfect anticorrelation (meaning 𝐴(𝐱, 𝜆) = −𝐵(𝐱, 𝜆) for all 𝐱) and that (𝐚,𝐛) = ±𝐚 ⋅ 𝐛. Bell then shows that Eq. (7) can be
violated [1,56]. For instance, with the choice 𝐚 = (1, 0, 0), 𝐛 = (1, 1, 0)∕

√

2, and 𝐜 = ±(1,−1, 0)∕
√

2, Eq. (7) becomes
√

2 ≤ 1, a clear
iolation.

Always within the realm of mathematical models, the only logically correct conclusion that one can draw from a violation of
q. (7) is that the model Eq. (6) cannot describe the correlation ±𝐚 ⋅𝐛 for all unit vectors 𝐚 and 𝐛, which is Bell’s theorem. However,

that does not imply that only the model Eq. (6) is excluded.
By virtue of Fine’s theorem [6,7] (for an alternative proof, see Appendix), for a fixed triple of conditions (𝐚,𝐛, 𝐜), a violation of

Eq. (7) also excludes the existence of any description in terms of a normalized nonnegative distribution 𝑓 (𝑥, 𝑦, 𝑧) (0 ≤ 𝑓 (𝑥, 𝑦, 𝑧) ≤ 1,
∑

𝑥,𝑦,𝑧=±1 𝑓 (𝑥, 𝑦, 𝑧) = 1) with the property that

(𝐚,𝐛) =
∑

𝑥𝑦 𝑓 (𝑥, 𝑦, 𝑧) , (𝐚, 𝐜) =
∑

𝑥𝑧 𝑓 (𝑥, 𝑦, 𝑧) , (𝐛, 𝐜) =
∑

𝑦𝑧 𝑓 (𝑥, 𝑦, 𝑧) . (9)
4

𝑥,𝑦,𝑧=±1 𝑥,𝑦,𝑧=±1 𝑥,𝑦,𝑧=±1
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As a matter of fact, Fine’s theorem shows much more, namely that the existence of a normalized nonnegative distribution 𝑓 (𝑥, 𝑦, 𝑧)
s equivalent to the Boole–Bell inequalities being satisfied (for a technically precise statement, see Appendix).

From a violation of Eq. (7) one can, if one wishes to do so, draw the conclusion that the correlations cannot be obtained from
he model Eq. (6) but Fine’s theorem leaves no room for interpretations of violations of a Boole–Bell inequality other than the
athematical equivalence.

It is important to mention here that Fine’s theorem has no implications for Bell’s theorem. Furthermore, the existence of a
ormalized nonnegative distribution 𝑓 (𝑥, 𝑦, 𝑧) for a fixed triple of conditions (𝐚,𝐛, 𝐜) does not imply that there exists a probabilistic
escription of the EPRB experiment in terms of a trivariate, simply because one cannot perform one EPRB experiment conditioned
n the three settings (𝐚,𝐛, 𝐜). In order to do so, one would needs to perform an extended EPRB experiment [53,73]. In this case, it
s impossible to violate any of the Bell-type inequalities [53,73].

. Empirical data: irrelevance of violating Bell-type inequalities

As shown in Section 2 correlations computed from two-valued data must always satisfy the inequality Eq. (2) with 𝛤 being the
alue of the fraction of triples. The Boole–Bell inequality for empirical data Eq. (4) is recovered in the exceptional case that 𝛤 = 1,
he only case in which one can prove the Boole–Bell inequality for empirical data. The same is true for the Clauser–Horn–Shimony–
olt [52,56] and Clauser–Horn [51] inequalities [53]. For empirical data, the mathematical proof of these two inequalities can only
e carried out if the empirical data can be reshuffled to form quadruples [53].

The violation of Bell-type inequalities by data from EPRB experiments and the conclusions drawn from it are regarded as a
andmark in the development of modern quantum technologies. But what then with the violation of Boole–Bell inequalities by
he foreign exchange rate data? The idea that this would be a consequence of ‘‘quantum or non-classical physics at work’’ sounds
trange, to put it mildly. Clearly, the logic, arguments and concepts (such as locality as encapsulated by Eq. (6)) that are being used
n contemporary quantum physics to interpret violations of Bell-type inequalities need to be scrutinized further.

. Conclusion

The discussion that follows uses the three-correlations case as an example. The same arguments and conclusions almost trivially
xtend to the four-correlations case as well [53]. The results presented in the earlier sections can be summarized as follows:

1. Correlations of empirical data cannot violate the model-free inequality Eq. (2).
2. Correlations of empirical data can violate inequality Eq. (4) when not all sextuples of data can be rearranged to form triples

(i.e., 𝛤 < 1). Such a violation has no meaning (other than that not all the triples can form sextuples) because empirical data
should comply with Eq. (2), not with Eq. (4), as exemplified by the analysis of the foreign exchange data.

3. The proof of inequality Eq. (7) assumes that the correlation is given by model Eq. (6). If a properly discretized version of
model Eq. (6) is used as a (computer) model for producing synthetic data, this model generates data that can be reshuffled
into a set of triples [53], that is 𝛤 = 1 [53].

4. A violation of the Bell-type inequality Eq. (4) by empirical data rules out the model Eq. (6) as a potential candidate for
describing the data. If the empirical data cannot be described by Bell’s model Eq. (6), the model has to be rejected or
extended.

5. Unless one subscribes to the idea that empirical data are generated by ‘‘mathematical rules governing the universe’’, the role
of any mathematical model is limited to describing empirical data. If the model description fails (e.g., because a model-
dependent inequality is violated), the proper action, practiced in most fields of science, would be to try improving the model,
not to philosophize about the premises that went into its formulation.

From (1–5), it follows that it is only by adopting the view that a mathematical model such as Eq. (6) is a reality existing in
he world in which we live that it may become possible to interpret the premises that led to the formulation of Eq. (6) as genuine
roperties of ‘‘nature’’. As it is unknown whether ‘‘mathematics rules the universe’’, it is perhaps more apt to analyze data without
elying on the premise that it does.
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ppendix. Trivariates of two-valued variables

Without loss of generality, any real-valued, normalized function 𝑓 (𝑥1, 𝑥2, 𝑥3) of the two-valued variables 𝑥1 = ±1, 𝑥2 = ±1, and
3 = ±1 can be written as

𝑓 (𝑥1, 𝑥2, 𝑥3) =
1 +𝐾1 𝑥1 +𝐾2 𝑥2 +𝐾3 𝑥3 +𝐾12 𝑥1𝑥2 +𝐾13 𝑥1𝑥3 +𝐾23 𝑥2𝑥3 +𝐾123 𝑥1𝑥2𝑥3

8
. (A.1)

From Eq. (A.1) it follows that

1 =
∑

𝑥1=±1

∑

𝑥2=±1

∑

𝑥3=±1
𝑓 (𝑥1, 𝑥2, 𝑥3) , (A.2a)

𝐾𝑖 =
∑

𝑥1=±1

∑

𝑥2=±1

∑

𝑥3=±1
𝑥𝑖𝑓 (𝑥1, 𝑥2, 𝑥3) , 𝑖 ∈ {1, 2, 3} , (A.2b)

𝐾𝑖𝑗 =
∑

𝑥1=±1

∑

𝑥2=±1

∑

𝑥3=±1
𝑥𝑖𝑥𝑗𝑓 (𝑥1, 𝑥2, 𝑥3) , (𝑖, 𝑗) ∈ {(1, 2), (1, 3), (2, 3)} , (A.2c)

𝐾123 =
∑

𝑥1=±1

∑

𝑥2=±1

∑

𝑥3=±1
𝑥1𝑥2𝑥3𝑓 (𝑥1, 𝑥2, 𝑥3) , (A.2d)

where the 𝐾 ’s are the moments of 𝑓 (𝑥1, 𝑥2, 𝑥3) and Eq. (A.2a) is a restatement of the normalization of 𝑓 (𝑥1, 𝑥2, 𝑥3).
If 𝑓 (𝑥1, 𝑥2, 𝑥3) is going to be used as a model for empirical frequencies, it must satisfy 0 ≤ 𝑓 (𝑥1, 𝑥2, 𝑥3) ≤ 1 and

∑

𝑥1 ,𝑥2 ,𝑥3=±1 𝑓 (𝑥1, 𝑥2, 𝑥3) = 1. From 0 ≤ 𝑓 (𝑥1, 𝑥2, 𝑥3) ≤ 1, it follows immediately that all the 𝐾 ’s in Eq. (A.2) are smaller than
one in absolute value. Furthermore the marginals 𝑓3(𝑥1, 𝑥2) =

∑

𝑥3=±1 𝑓 (𝑥1, 𝑥2, 𝑥3), 𝑓2(𝑥1, 𝑥3) =
∑

𝑥2=±1 𝑓 (𝑥1, 𝑥2, 𝑥3), and 𝑓1(𝑥2, 𝑥3) =
∑

𝑥1=±1 𝑓 (𝑥1, 𝑥2, 𝑥3) are real-valued, normalized and nonnegative bivariates that is 0 ≤ 𝑓3(𝑥1, 𝑥2) ≤ 1, ∑𝑥1 ,𝑥2=±1 𝑓3(𝑥1, 𝑥2) = 1, etc.
rom the nonnegativity of these marginals, it follows that |𝐾𝑖 ±𝐾𝑗 | ≤ 1 ±𝐾𝑖𝑗 for (𝑖, 𝑗) ∈ {(1, 2), (1, 3), (2, 3)} [53]. Other inequalities

involving moments follow by making linear combinations of the inequalities 𝑓 (𝑥1, 𝑥2, 𝑥3) ≥ 0 for different values of (𝑥1, 𝑥2, 𝑥3). For
instance, from 4[𝑓 (+1,+1,+1)+𝑓 (−1,−1,−1)] = 1+𝐾12 +𝐾13 +𝐾23 ≥ 0 and 4[𝑓 (−1,+1,+1)+𝑓 (+1,−1,−1)] = 1−𝐾12 −𝐾13 +𝐾23 ≥ 0
it follows that |𝐾12 +𝐾13| ≤ 1 + 𝐾23, one instance the Boole–Bell inequality. Recall that the latter implies that the inequalities
|𝐾12 ±𝐾23| ≤ 1 ±𝐾13 and |𝐾13 ±𝐾23| ≤ 1 ±𝐾12 are also satisfied see Eq. (N.6) in Ref. [53].

Summarizing: if the data can be modeled by a nonnegative, normalized trivariate 𝑓 (𝑥1, 𝑥2, 𝑥3), all inequalities

|𝐾1| ≤ 1 , |𝐾2| ≤ 1 , |𝐾3| ≤ 1 , |𝐾12| ≤ 1 , |𝐾13| ≤ 1 , |𝐾23| ≤ 1 , (A.3a)

|𝐾1 ±𝐾2| ≤ 1 ±𝐾12 , |𝐾1 ±𝐾3| ≤ 1 ±𝐾13 , |𝐾2 ±𝐾3| ≤ 1 ±𝐾23 , (A.3b)

|𝐾12 ±𝐾13| ≤ 1 ±𝐾23 , (A.3c)

which include the Boole–Bell inequalities are satisfied. Thus, the inequalities Eq. (A.3) do not only derive from Bell’s model Eq. (6)
but also from a much more general model defined by the trivariate Eq. (A.1).

A remarkable fact, first shown by Fine [6,7] by a different approach than the one taken here, is that if all inequalities Eq. (A.3)
are satisfied, it is possible to construct a real-valued, normalized trivariate 0 ≤ 𝑓 (𝑥1, 𝑥2, 𝑥3) ≤ 1 of the two-valued variables 𝑥1 = ±1,
𝑥2 = ±1, and 𝑥3 = ±1, yielding all the moments that appear in Eq. (A.3). The text that follows replaces the corresponding part and
theorem in Ref. [53], which are not correct.

First note that if Eqs. (A.3a) and (A.3b) hold, the existence of the three normalized bivariates 0 ≤ 𝑓3(𝑥1, 𝑥2) ≤ 1, 0 ≤ 𝑓2(𝑥1, 𝑥3) ≤ 1,
and 0 ≤ 𝑓1(𝑥2, 𝑥3) ≤ 1 is guaranteed [53]. Indeed, for instance, if |𝐾1| ≤ 1, |𝐾2| ≤ 1, |𝐾12| ≤ 1, and |𝐾1 ±𝐾2| ≤ 1 ± 𝐾12 it follows
immediately that 0 ≤ 𝑓3(𝑥1, 𝑥2) = (1 + 𝐾1 𝑥1 + 𝐾2 𝑥2 + 𝐾12 𝑥1𝑥2)∕4 ≤ 1 is the desired normalized bivariate. Therefore, what remains
to be proven is the existence of a real-valued trivariate 𝑔(𝑥1, 𝑥2, 𝑥3) that (i) takes values in the interval [0, 1] and (ii) yields the three
6

named bivariates with their respective moments 𝐾1,… , 𝐾23 that appear in Eqs. (A.3a) and (A.3b) as marginals.
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Second, note that without loss of generality, any real-valued trivariate 𝑔(𝑥1, 𝑥2, 𝑥3) of the two-valued variables 𝑥1 = ±1, 𝑥2 = ±1,
and 𝑥3 = ±1 can be written as

𝑔(𝑥1, 𝑥2, 𝑥3) =
𝐾 ′

0 +𝐾 ′
1 𝑥1 +𝐾 ′

2 𝑥2 +𝐾 ′
3 𝑥3 +𝐾 ′

12 𝑥1𝑥2 +𝐾 ′
13 𝑥1𝑥3 +𝐾 ′

23 𝑥2𝑥3 +𝐾 ′
123 𝑥1𝑥2𝑥3

8
. (A.4)

Imposing requirement (ii) immediately yields 𝐾 ′
0 = 1, 𝐾 ′

1 = 𝐾1, 𝐾 ′
2 = 𝐾2, 𝐾 ′

3 = 𝐾3, 𝐾 ′
12 = 𝐾12, 𝐾 ′

13 = 𝐾13, and 𝐾 ′
23 = 𝐾23, leaving

only 𝐾 ′
123 as unknown.

Third, the requirement that 0 ≤ 𝑔(𝑥1, 𝑥2, 𝑥3) is used to derive conditions for the unknown 𝐾 ′
123 in terms of all the moments

that appear in Eq. (A.3). This can be accomplished as follows. The eight inequalities 𝑔(𝑥1, 𝑥2, 𝑥3) ≥ 0 are rewritten as bounds on
𝐾 ′

123. For instance 𝑔(+1,+1,+1) ≥ 0 ⟺ −1 − 𝐾1 − 𝐾2 − 𝐾3 − 𝐾12 − 𝐾13 − 𝐾23 ≤ 𝐾 ′
123 and 𝑔(−1,−1,−1) ≥ 0 ⟺ 𝐾 ′

123 ≤
1 −𝐾1 −𝐾2 −𝐾3 +𝐾12 +𝐾13 +𝐾23, and so on. The resulting eight inequalities can be summarized as

max
[

−1 +𝐾1 −𝐾2 −𝐾3 −𝐾12 −𝐾13 +𝐾23,−1 −𝐾1 +𝐾2 −𝐾3 −𝐾12 +𝐾13 −𝐾23,

− 1 −𝐾1 −𝐾2 +𝐾3 +𝐾12 −𝐾13 −𝐾23,−1 +𝐾1 +𝐾2 +𝐾3 +𝐾12 +𝐾13 +𝐾23
]

≤ 𝐾123 ≤ min
[

1 −𝐾1 −𝐾2 −𝐾3 +𝐾12 +𝐾13 +𝐾23, 1 +𝐾1 +𝐾2 −𝐾3 +𝐾12 −𝐾13 −𝐾23,

1 +𝐾1 −𝐾2 +𝐾3 −𝐾12 +𝐾13 −𝐾23, 1 −𝐾1 +𝐾2 +𝐾3 −𝐾12 −𝐾13 +𝐾23
]

. (A.5)

Using the inequalities max(𝑎, 𝑏, 𝑐, 𝑑) ≥ (𝑎+ 𝑏+ 𝑐 + 𝑑)∕4 and min(𝑎, 𝑏, 𝑐, 𝑑) ≤ (𝑎+ 𝑏+ 𝑐 + 𝑑)∕4 it immediately follows from Eq. (A.5) that
−1 ≤ 𝐾 ′

123 ≤ 1, which together with Eq. (A.3a), guarantees that 𝑔(𝑥1, 𝑥2, 𝑥3) ≤ 1.
To prove that there exists at least one value of 𝐾 ′

123 satisfying Eq. (A.5) if all inequalities in Eq. (A.3) are satisfied, it is sufficient
to show that the difference min(…)−max(…) cannot be negative. One straighforward way to do this is to use the sixteen inequalities
Eqs. (A.3b) and Eq. (A.3c) to show that all sixteen possible differences deriving from Eq. (A.5) are nonnegative. Instead, it is more
elegant to rewrite the arguments of max(…) and min(…) in Eq. (A.5) as

𝐾 ′
123 ≥ max(−1 −𝐾3 −𝐾12 + |𝐾1 +𝐾2 +𝐾13 +𝐾23|,−1 +𝐾3 +𝐾12 + |𝐾1 −𝐾2 −𝐾13 +𝐾23|) =∶ LHS , (A.6a)

𝐾 ′
123 ≤ min(1 −𝐾3 +𝐾12 − |𝐾1 +𝐾2 −𝐾13 −𝐾23|, 1 +𝐾3 −𝐾12 − |𝐾1 −𝐾2 +𝐾13 −𝐾23|) =∶ RHS . (A.6b)

The final step is then to prove that RHS−LHS ≥ 0. Combining Eqs. (A.6a) and (A.6b) and using min(𝑎, 𝑏) +min(𝑐, 𝑑) = min(𝑎+ 𝑐, 𝑎+
𝑑, 𝑏 + 𝑐, 𝑏 + 𝑑) yields

RHS − LHS = min(2 + 2𝐾12 − |𝐾1 +𝐾2 −𝐾13 −𝐾23| − |𝐾1 +𝐾2 +𝐾13 +𝐾23| ,

2 − 2𝐾12 − |𝐾1 −𝐾2 +𝐾13 −𝐾23| − |𝐾1 −𝐾2 −𝐾13 +𝐾23| ,

2 − 2𝐾3 − |𝐾1 +𝐾2 −𝐾13 −𝐾23| − |𝐾1 −𝐾2 −𝐾13 +𝐾23| ,

2 + 2𝐾3 − |𝐾1 −𝐾2 +𝐾13 −𝐾23| − |𝐾1 +𝐾2 +𝐾13 +𝐾23|) . (A.7)

Using the inequalities Eq. (A.3) and the identity −|𝑎 − 𝑏| − |𝑎 + 𝑏| = min(−𝑎 + 𝑏,−𝑏 + 𝑎) + min(−𝑎 − 𝑏, 𝑎 + 𝑏) = 2min(−|𝑎|,−|𝑏|), it can
e shown that each of the four arguments of min(.) in Eq. (A.7) is nonnegative. In detail

2 + 2𝐾12 − |𝐾1 +𝐾2 − (𝐾13 +𝐾23)| − |𝐾1 +𝐾2 +𝐾13 +𝐾23| = 2 + 2𝐾12 + 2min(−|𝐾1 +𝐾2|,−|𝐾13 +𝐾23|)

≥ 2 + 2𝐾12 + 2(−1 −𝐾12) = 0 , (A.8a)
2 − 2𝐾12 − |𝐾1 −𝐾2 +𝐾13 −𝐾23| − |𝐾1 −𝐾2 − (𝐾13 −𝐾23)| = 2 − 2𝐾12 + 2min(−|𝐾1 −𝐾2|,−|𝐾13 −𝐾23|)

≥ 2 −𝐾12 + 2(−1 +𝐾12) = 0 , (A.8b)
2 − 2𝐾3 − |𝐾1 −𝐾13 +𝐾2 −𝐾23| − |𝐾1 −𝐾13 − (𝐾2 −𝐾23)| = 2 − 2𝐾3 + 2min(−|𝐾1 −𝐾13|,−|𝐾2 −𝐾23|)

≥ 2 − 2𝐾3 + 2(−1 +𝐾3) = 0 , (A.8c)
2 + 2𝐾3 − |𝐾1 +𝐾13 − (𝐾2 +𝐾23)| − |𝐾1 +𝐾13 +𝐾2 +𝐾23| = 2 + 2𝐾3 + 2min(−|𝐾1 +𝐾13|,−|𝐾2 +𝐾23|)

≥ 2 + 2𝐾3 + 2(−1 −𝐾3) = 0. (A.8d)

his completes the proof that if all inequalities Eq. (A.3) are satisfied, there exists a normalized, nonnegative trivariate 0 ≤
(𝑥1, 𝑥2, 𝑥3) ≤ 1 given by Eq. (A.4) with 𝐾 ′

123 ∈ [LHS,RHS]. Summarizing we have proven

Theorem: Given a real-valued, normalized function 0 ≤ 𝑓 (𝑥1, 𝑥2, 𝑥3) ≤ 1 of two-valued variables, its moments
Eq. (A.2a)–(A.2c) satisfy all the inequalities Eq. (A.3). Conversely, given the values of the moments
Eq. (A.2a)–(A.2c) satisfying all the inequalities Eq. (A.3), it is always possible to choose 𝐾123 in
the range [LHS,RHS] (defined by the right hand sides of Eqs. (A.6a) and (A.6b), respectively), and
construct a real-valued, normalized function 0 ≤ 𝑓 (𝑥1, 𝑥2, 𝑥3) ≤ 1 of two-valued variables which yields
the specified values of the moments Eq. (A.2a)–(A.2c).

A different strategy was implemented in Mathematica®, providing an independent proof of the theorem. The explicit form of
𝑓 (𝑥1, 𝑥2, 𝑥3) in terms of its moments is given by Eq. (A.1).
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