001029392 001__ 1029392
001029392 005__ 20250203133154.0
001029392 0247_ $$2doi$$a10.1109/JSTARS.2024.3435081
001029392 0247_ $$2ISSN$$a1939-1404
001029392 0247_ $$2ISSN$$a2151-1535
001029392 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05100
001029392 0247_ $$2WOS$$aWOS:001294364400012
001029392 037__ $$aFZJ-2024-05100
001029392 082__ $$a520
001029392 1001_ $$0P:(DE-Juel1)187558$$aSharma, Surbhi$$b0
001029392 245__ $$aSen4Map: Advancing Mapping with Sentinel-2 by Providing Detailed Semantic Descriptions and Customizable Land-Use and Land-Cover Data
001029392 260__ $$aNew York, NY$$bIEEE$$c2024
001029392 3367_ $$2DRIVER$$aarticle
001029392 3367_ $$2DataCite$$aOutput Types/Journal article
001029392 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724396277_24626
001029392 3367_ $$2BibTeX$$aARTICLE
001029392 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029392 3367_ $$00$$2EndNote$$aJournal Article
001029392 520__ $$aThis paper presents Sen4Map, a large-scale benchmark dataset designed to enhance the capability of generating land-cover maps using Sentinel-2 data. Comprising non-overlapping 64×64 patches extracted from Sentinel-2 time series images, the dataset spans 335,125 geo-tagged locations across the European Union. These locations are associated with detailed land-cover and land-use information gathered by expert surveyors in 2018. Unlike most existing large datasets available in the literature, the presented database provides: (1) a detailed description of the land-cover and land-use properties of each sampled area; (2) independence of scale, as it is associated with reference data collected in-situ by expert surveyors; (3) the ability to test both temporal and spatial classification approaches because of the availability of time series of 64×64 patches associated with each labeled sample; and (4) samples were collected following a stratified random sample design to obtain a statistically representative spatial distribution of land-cover classes throughout the European Union. To showcase the properties and challenges offered by Sen4Map, we benchmarked the current state-of-the-art land-cover classification approaches. The dataset and code can be downloaded at: https://datapub.fz-juelich.de/sen4map.
001029392 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001029392 536__ $$0G:(EU-Grant)956748$$aADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748)$$c956748$$fH2020-JTI-EuroHPC-2019-1$$x1
001029392 536__ $$0G:(BMBF)16HPC008$$aVerbundprojekt: ADMIRE - Adaptives Datenmanagement für das Exascale-Computing (16HPC008)$$c16HPC008$$x2
001029392 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x3
001029392 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029392 7001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b1
001029392 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b2
001029392 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b3$$eCorresponding author
001029392 7001_ $$0P:(DE-HGF)0$$aParis, Claudia$$b4
001029392 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2024.3435081$$gp. 1 - 17$$p13893 - 13907$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v17$$x1939-1404$$y2024
001029392 8564_ $$uhttps://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.pdf$$yOpenAccess
001029392 8564_ $$uhttps://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.gif?subformat=icon$$xicon$$yOpenAccess
001029392 8564_ $$uhttps://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029392 8564_ $$uhttps://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029392 8564_ $$uhttps://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029392 8767_ $$d2024-08-23$$eAPC$$jZahlung erfolgt$$zIEEE/Token
001029392 909CO $$ooai:juser.fz-juelich.de:1029392$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001029392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187558$$aForschungszentrum Jülich$$b0$$kFZJ
001029392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b1$$kFZJ
001029392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b2$$kFZJ
001029392 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b3$$kFZJ
001029392 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001029392 9141_ $$y2024
001029392 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001029392 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001029392 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001029392 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001029392 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001029392 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
001029392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029392 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
001029392 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001029392 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001029392 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:38:59Z
001029392 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:38:59Z
001029392 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:38:59Z
001029392 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001029392 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001029392 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001029392 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2022$$d2024-12-19
001029392 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE J-STARS : 2022$$d2024-12-19
001029392 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001029392 980__ $$ajournal
001029392 980__ $$aVDB
001029392 980__ $$aUNRESTRICTED
001029392 980__ $$aI:(DE-Juel1)JSC-20090406
001029392 980__ $$aAPC
001029392 9801_ $$aAPC
001029392 9801_ $$aFullTexts