Home > Publications database > Sen4Map: Advancing Mapping with Sentinel-2 by Providing Detailed Semantic Descriptions and Customizable Land-Use and Land-Cover Data > print |
001 | 1029392 | ||
005 | 20250203133154.0 | ||
024 | 7 | _ | |a 10.1109/JSTARS.2024.3435081 |2 doi |
024 | 7 | _ | |a 1939-1404 |2 ISSN |
024 | 7 | _ | |a 2151-1535 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05100 |2 datacite_doi |
024 | 7 | _ | |a WOS:001294364400012 |2 WOS |
037 | _ | _ | |a FZJ-2024-05100 |
082 | _ | _ | |a 520 |
100 | 1 | _ | |a Sharma, Surbhi |0 P:(DE-Juel1)187558 |b 0 |
245 | _ | _ | |a Sen4Map: Advancing Mapping with Sentinel-2 by Providing Detailed Semantic Descriptions and Customizable Land-Use and Land-Cover Data |
260 | _ | _ | |a New York, NY |c 2024 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1724396277_24626 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This paper presents Sen4Map, a large-scale benchmark dataset designed to enhance the capability of generating land-cover maps using Sentinel-2 data. Comprising non-overlapping 64×64 patches extracted from Sentinel-2 time series images, the dataset spans 335,125 geo-tagged locations across the European Union. These locations are associated with detailed land-cover and land-use information gathered by expert surveyors in 2018. Unlike most existing large datasets available in the literature, the presented database provides: (1) a detailed description of the land-cover and land-use properties of each sampled area; (2) independence of scale, as it is associated with reference data collected in-situ by expert surveyors; (3) the ability to test both temporal and spatial classification approaches because of the availability of time series of 64×64 patches associated with each labeled sample; and (4) samples were collected following a stratified random sample design to obtain a statistically representative spatial distribution of land-cover classes throughout the European Union. To showcase the properties and challenges offered by Sen4Map, we benchmarked the current state-of-the-art land-cover classification approaches. The dataset and code can be downloaded at: https://datapub.fz-juelich.de/sen4map. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a ADMIRE - Adaptive multi-tier intelligent data manager for Exascale (956748) |0 G:(EU-Grant)956748 |c 956748 |f H2020-JTI-EuroHPC-2019-1 |x 1 |
536 | _ | _ | |a Verbundprojekt: ADMIRE - Adaptives Datenmanagement für das Exascale-Computing (16HPC008) |0 G:(BMBF)16HPC008 |c 16HPC008 |x 2 |
536 | _ | _ | |a EUROCC-2 (DEA02266) |0 G:(DE-Juel-1)DEA02266 |c DEA02266 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Sedona, Rocco |0 P:(DE-Juel1)178695 |b 1 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 2 |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 3 |e Corresponding author |
700 | 1 | _ | |a Paris, Claudia |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1109/JSTARS.2024.3435081 |g p. 1 - 17 |0 PERI:(DE-600)2457423-5 |p 13893 - 13907 |t IEEE journal of selected topics in applied earth observations and remote sensing |v 17 |y 2024 |x 1939-1404 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1029392/files/Sen4Map_Advancing_Mapping_With_Sentinel-2_by_Providing_Detailed_Semantic_Descriptions_and_Customizable_Land-Use_and_Land-Cover_Data-1.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1029392 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187558 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171343 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:38:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:38:59Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:38:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-19 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE J-STARS : 2022 |d 2024-12-19 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE J-STARS : 2022 |d 2024-12-19 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|