001     1029393
005     20250401102819.0
024 7 _ |a 10.1109/M2GARSS57310.2024.10537465
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05101
|2 datacite_doi
037 _ _ |a FZJ-2024-05101
100 1 _ |a Delilbasic, Amer
|0 P:(DE-Juel1)191384
|b 0
|u fzj
111 2 _ |a 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS)
|c Oran
|d 2024-04-15 - 2024-04-17
|w Algeria
245 _ _ |a Quantum Annealing for Semantic Segmentation in Remote Sensing: Potential and Limitations
260 _ _ |c 2024
|b IEEE
300 _ _ |a 376-380
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1723194971_30996
|2 PUB:(DE-HGF)
520 _ _ |a Quantum Annealing (QA) is a powerful method for combinatorial optimisation derived from adiabatic quantum computation. The development of computing devices implementing QA accelerated its adoption in practical use cases. In this paper, we summarise the main features and limitations of QA and its application to remote sensing, specifically to semantic segmentation. We provide indications for successfully applying it to real problems, and techniques for improving its performance. This overview can support practitioners in the adoption of this innovative computing technology.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 2
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 3
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Le Saux, Bertrand
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 4
|u fzj
773 _ _ |a 10.1109/M2GARSS57310.2024.10537465
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029393/files/manuscript.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029393/files/manuscript.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029393/files/manuscript.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029393/files/manuscript.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029393/files/manuscript.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029393
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21