001     1029394
005     20240809202222.0
024 7 _ |a 10.1109/M2GARSS57310.2024.10537440
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05102
|2 datacite_doi
037 _ _ |a FZJ-2024-05102
100 1 _ |a Ghosh, Raktim
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS)
|c Oran
|d 2024-04-15 - 2024-04-17
|w Algeria
245 _ _ |a A Hybrid Quantum-Classical CNN Architecture for Semantic Segmentation of Radar Sounder Data
260 _ _ |c 2024
|b IEEE
300 _ _ |a 366-370
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1723195034_24688
|2 PUB:(DE-HGF)
520 _ _ |a The article presents for the first time a hybrid quantum-classical architecture in the context of subsurface target detection in the radar sounder signal. We enhance the classical convolutional neural network (CNN) based architecture by integrating a quantum layer in the latent space. We investigate two quantum circuits with the classical neural networks by exploiting fundamental properties of quantum mechanics such as entanglement and superposition. The proposed hybrid architecture is used for the downstream task of patch-wise semantic segmentation of radar sounder subsurface images. Experimental results on the MCoRDS and MCoRDS3 datasets demonstrated the capability of the hybrid quantum-classical approach for radar sounder information extraction.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Delilbasic, Amer
|0 P:(DE-Juel1)191384
|b 1
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 2
|u fzj
700 1 _ |a Bovolo, Francesca
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/M2GARSS57310.2024.10537440
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1029394/files/manuscript.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1029394/files/manuscript.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1029394/files/manuscript.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1029394/files/manuscript.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1029394/files/manuscript.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1029394
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21