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ABSTRACT

The article presents for the first time a hybrid quantum-
classical architecture in the context of subsurface target
detection in the radar sounder signal. We enhance the clas-
sical convolutional neural network (CNN) based architecture
by integrating a quantum layer in the latent space. We inves-
tigate two quantum circuits with the classical neural networks
by exploiting fundamental properties of quantum mechanics
such as entanglement and superposition. The proposed hybrid
architecture is used for the downstream task of patch-wise
semantic segmentation of radar sounder subsurface images.
Experimental results on the MCoRDS and MCoRDS3 datasets
demonstrated the capability of the hybrid quantum-classical
approach for radar sounder information extraction.

Index Terms— radar sounder, quantum computing, quan-
tum machine learning, subsurface sensing, segmentation

1. INTRODUCTION

Radar Sounders are nadir-looking instruments equipped with
active sensing capabilities that transmit linearly modulated
EM pulses and receive the backscattered echoes from subsur-
face targets depending on the geophysical properties such as
dielectric discontinuities, target geometry, etc. The operating
range of these sensors varies from High Frequency (HF) to
Very High Frequency (VHF) bands [1]. The backscattered re-
turns are coherently summed, Synthetic Aperture Radar (SAR)
focused, and post-processed by clutter reduction, platforms in-
stability correction, etc., to generate radargrams (see Figure
1). The radargrams can be exploited for miscellaneous sub-
surface investigations, subsurface target detection, segmen-
tation, estimation of geophysical properties, etc. Research
activities have been carried out on classical machine learning
for radargrams information extraction by Convolutional Neu-
ral Network (CNN) or Transformer-based methods. These
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Fig. 1. A Sample MCoRDS Radargram. Red blocks are the
patches extracted for training and testing the HQC architecture.

approaches include both supervised [2] and unsupervised [3]
segmentation techniques and showed good performance. Over
the last few years, Quantum Machine Learning (QML) has
emerged as an interdisciplinary field with a view to improving
the computational tasks of classical machine learning models
by leveraging quantum algorithms to incorporate in Quan-
tum Computers [4]. However, no work has been carried out
so far in the context of QML architectures for characterizing
radargrams.

In the last few years, a substantial amount of research
activities have been carried out in the development of differ-
ent types of Quantum Computers [4]. Quantum Computers
incorporate the principle of quantum mechanics to perform
computations using qubits. After the quantum measurement,
the superposition state of a qubit is either collapsed to the basis
states |0) or |1), according to the corresponding probabilities.
For every n qubits, we can represent 2" possible states, thereby
demonstrating the exponential improvement in respect of the
classical bits. By utilizing principles of QC, quantum algo-
rithms are developed to address miscellaneous computational
problems ranging from search and optimizations, quantum
simulations, quantum cryptography, etc [4]. In remote sensing
image classification, [5] incorporated Quantum SVM based
on quantum annealing and [6] developed gate-based QC with
Hybrid Quantum-Classical (HQC) architecture. Recently, [7]
developed a HQC architecture by utilizing the quantum cir-
cuits as feature extractors for multi-spectral Sentinel-2 images
and classical architecture for final predictions. However, there
is no attempt to use quantum related concepts in processing
radar sounder.

This study aims to explore the potential of QC in the



context of radar sounder image segmentation. We develop a
HQC architecture by extending the hybrid framework of [6]
for the task of patch-wise semantic segmentation. We uti-
lize the Quantum Circuit in the latent space of a UNET-like
architecture for transferring discriminative contexts between
the encoder and decoder. Experimental results demonstrated
the potential of Quantum Circuits to establish a contextually
rich information processing system in the latent space of HQC
architecture. However, the similar contextual richness was not
observed while replacing the Quantum Circuits with the clas-
sical fully connected (FC) layers during training. Therefore,
Quantum Circuits turned out to be a stable bottleneck connec-
tor as opposed to the FC layers for the similar architectural
settings.

2. PROPOSED METHODOLOGY

The overall goal of the proposed HQC architecture is to clas-
sify each pixel in the radargram patches into distinct classes.

Figure 3 shows the HQC architecture for the semantic seg-
mentation of the radar sounder data. At first, the successive
convolutional layers are used to encode the information to
a higher dimensional discriminative embedding space. The
intermediate feature tensors are flattened to a specified dimen-
sion, and the FC layers are introduced to reduce the dimen-
sionality of the feature tensors to the number of parameters in
the quantum circuits. The classical information at the last bot-
tleneck layer in the Encoder is injected into the parameterized
quantum circuits. After the measurement is performed on the
qubits, the corresponding probability amplitudes are utilized
as an input to the Decoder. The Decoder upsamples the input
spatial dimension for the final patch-wise predictions.

2.1. HQC Encoder

The Encoder performs convolution operations with window
size of w X w, and max-pooling operations reduce the spatial

dimension of the input tensor from [H x W] to [ £ x 3] using

the sequence as [% X %], where j € {1,2,...,4}. The CNN
embeds high dimensional local spatial contexts on feature
tensors. The dimensionality of tensors extracted from CNN is
reduced to the number of parameters expected in the quantum
layers in the bottleneck. Let us denote a feature tensor (derived
from a training sample through CNN embedding, upper branch
in Fig. 3) as 6 = {6, 6y, ...,0k} where K is the number of
parameters in the quantum circuit.

2.2. HQC Bottleneck Quantum Layer

{69, 61, ..., Ok } is injected into the quantum circuit (QC in Fig.
3) made of rotation gates to estimate probability amplitudes
with respect to the basis states of a 4 — qubit system bottleneck
quantum layer for the proposed HQC architecture. To simplify
the explanation for the quantum circuits, we elucidate on 2 —
qubit quantum system.

A. Two-Qubit Quantum System

Let us consider a 2 — qubit system with the respective state
space [o) = ao|0) + Bo|1) and [¢1) = a1 [0) + B [1) with
|laol* + |Bol* = 1 and |a;|* + |B1]* = 1 with o, @ and By,
1 representing the probability of measuring corresponding
states |0) and |1), respectively. The joint evolution of the
2 — qubit system with states |yg) and | can be denoted as
[¥o) ® |¥1) (or [Yo1)). The composite representation of the
states |io) and |1), is:

o) ® 1) = apan |00) + aoBi [01) + Boay [10) + BoBi [11)
ey
where a;, 8; € C, and apa; + aof1 + Boay + Bof1 = 1.
Let us consider a state in which |¢) = % |00) + \l@ [11).
To factorize states of two qubits, probabilities in Eq. 1 has
to be as aqpa; = %,(10,31 = 0,Boa; = 0,881 = \/LZ’ which
is contradictory in terms of feasible solutions. Therefore, |¢)
cannot be factorized into the product states of two qubits. This
phenomenon is known as Entanglement. The state |¢) is also
known as Bell state [y) g,
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If the measurement on the first qubit collapses to state
|0) with a probability of 0.5, the entangled state will collapse
to |00). The state of the second qubit will be automatically
|0). If two qubits are separated after Entanglement, the results
hold true for even a theoretically infinite separation of two
qubits, thus violating the classical locality principles. Also,
several experiments on measuring the properties of the en-
tangled particles separated at a distance, violated the Bell’s
inequality. The reader is referred to [8] for further details on
the mathematical treatment.

B. Quantum Gates

The language of Quantum Computation can be described
through the changes occurring over the quantum states. Anal-
ogous to the classical computer with logic gates, a quantum
computer is built with Quantum Gates to carry out quantum
information processes by manipulating these gates. Quantum
gates perform unitary operations with UTU = UUT = I, where
T is the conjugate transpose operator on the unitary matrix U.

The Hadamard Gate is described by the following equa-
tion.

H 1 (1 1 3)
VR |
If we consider a qubit with state |0), the Hadamard Gate
will return the superposition of two states
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The Hadamard Gates are also attributed as "square-root of
NOT" gate as it turns a state |0) into (|0) + [1))/V2.

The Rotation Gates (denoted as R, (6), R, (6), R;(0)) are
single qubit gates described by the rotation operations on the
Bloch sphere with the rotation along the x, y, and z axis with
the angle 6. In particular, the Gate R, () is described in the
following form:

cos(2) —sin(¥)

Ry@) = . o )
sin(3)  cos(3)

The Controlled-NOT Gate transforms the composite

state o [00) + apfB; |01) + Boay [10) + BB [11) (2) into

Qo |00> + a'oﬁl |01> +ﬂ0c11 |11> +ﬁ0ﬁ] |10) CNOT gates

are utilized to create entangled or disentangled states.

1 0 00
01 00
U= (6)
0 0 0 1
0010

By utilizing the Hadamard Gate and the CNOT gate, a
Bell state can be created in the following way. At first the
composite state with 2 — qubit system |0) ® |0) is prepared. If
the Hadamard gate operates on the first qubit, the superposition
of the state becomes \%(lO) +|1)). Therefore, the composite
state will be ‘/LE(|OO) +110)). After the CNOT gate, the final

state after the quantum circuit will be % (]00) +111)), thereby
creating an entangled state.
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Fig. 2. A Quantum Circuit to create Bell State

B. Quantum Circuits

In this section, we elucidate the two standard quantum circuits
from the IBM Qiskit framework which are utilized as HQC
bottleneck quantum layer.
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Fig. 3. Hybrid Quantum-Classical Neural Network.

1. Bellman Quantum Circuit

The first circuit is the Bellman Quantum Circuit as shown in
Fig 4. Initially, the circuit prepares an entangled state by uti-
lizing the Hadamard and CNOT gates. This phenomenon can
be attributed to quantum correlations. After establishing the
entanglement, the parameterized rotation gates are incorpo-
rated into the entangled state. All the qubits are rotated along
the y-axis with parameters 6 that correspond to the embed-
dings in output to the CNN bottleneck. The angular units in
the rotation gates are parameterized by the classical informa-
tion. After the rotated entangled states, the consecutive CNOT
processes are mirrored with respect of the preceding CNOT
operations while creating the entangled state. Overall, the
classical information 6 derived from the classical networks is
transformed into the quantum feature space by utilizing the en-
tanglement and superposition on the Bellman circuit. As the
circuit creates an entangled state along with the rotation gates,
this transformation seems to amplify the classical information
into the quantum feature spaces more efficiently.

o)

i

1) o Ry(6)) oA
2 @ Ry(62) &o— A

lr3) D— Ry (63) '—6

Fig. 4. Schematic Layout of the Bellman Quantum Circuit.
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2. Real Amplitudes Circuit

The second circuit is the Real Amplitude circuits as shown in
Fig 5. Atfirst, all the qubits are passed through corresponding
Hadamard Gates and then the rotation gates are incorporated
in the joint state of the system with parameters 6. Hereafter,
by utilizing the CNOT gates, the mutual entanglements are
established between the qubits. After that, four rotation gates
are incorporated with parameters 8;. The advantages of the
Real Amplitudes circuit seems to lie in encoding the classical
information before and after the Entanglement of the Qubits.
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Fig. 5. Schematic Layout of the Real Amplitudes Circuit.
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C. Quantum Embedding

We integrate a parameterized quantum circuit as a hidden
layer of the HQC neural network. To embed the classical data
for the parameterization on quantum circuits, a higher dimen-
sional classical feature mapping is important to enhance the
contextual richness w.r.t depth of the network. By utilizing the
unitary operators over the quantum nodes, a quantum feature
mapping is performed over the high dimensional classical en-
coding. To inject the classical information into the quantum
circuit by utilizing the unitary operators, the classical informa-
tion has to be passed through high dimensional discriminative
feature embedding through miscellaneous layers of activation.
Here, we utilize the successive CNN layers. After injecting the
values {6, 0, ..., Ok } into the quantum circuits, the sequence
of measured probability amplitudes for the 4 — qubit system
can be denote as {pi, pa, ..., pp«}. This sequence is utilized
in the decoder architecture for the final predictions (see Sec-
tion 2.3). It is worth mentioning that we can utilize different
quantum gates (such as rotation gates, Hadamard gates, etc.)
to encode classical information.

2.3. HQC Decoder

The decoder takes probability amplitudes {pi, p2, ..., pos} as
input which are fed into the FC layers by projecting the ampli-
tudes to a higher dimensional feature space. The correspond-
ing feature tensors are then reshaped for the successive convo-
lution operations. By incorporating the successive Transpose
Convolution operations, the spatial dimension [H, W] is re-
covered for predictions.

3. EXPERIMENTAL RESULTS
3.1. Dataset

We tested our HQC architecture on the MCoRDS and
MCoRDS3 datasets hosted by the Centre of Remote Sensing
of Ice Sheets (CReSIS) unit. The operating bandwidths of
MCOoRDS are 9.5 MHz and 30 MHz. The operating altitude
of the aircraft was 7000 m. The campaign took place over
several locations of Antarctica ranging from (—86°00’N to
—15°67'E) to (—86°02'N to 29°45’E) on November 2010.
A total trace of 400 line-km is covered along the azimuth
direction with 27350 range lines for the MCoRDS dataset. In
the case of the MCoRDS3 dataset, the operating bandwidth is
30 MHz, with the Aircraft altitude of about 500m. The total
number of range lines for the MCoRDS3 dataset is 30009.
The campaign for the MCoRDS3 dataset took place in inland
Greenland in 2017.

3.2. Experimental Setup

The radargrams are labeled along the azimuth and range di-
rections according to the different targets. We extracted the
patches from the MCoRDS and MCoRDS3 datasets. The
labelled targets are ice layers, bedrock, and noise across the
range directions. Here we focus on distinguishing the noise
and bedrock. We extracted patches from the radargram across

Table 1. Accuracy Assessment

Algorithms F1-Score OA
HQC (Real Amplitudes Circuit)  0.8477  93.93
HQC (Bellman Circuit) 0.8248  93.13
Classical Architecture 0.7407 89.55

the width of the bedrock along with the noise. The spatial
dimension of each training sample is H X W = 50 x 50. We
utilize 800 samples for training and 254 samples for testing.
We incorporate convolution operations (Kernel Size is w X w
= 3 % 3), along with the downsampling with max pooling fol-
lowed by ReLU activation. A is set to 3. The downsampling
operation reduced the spatial dimension from 50 x 50 to 4 x 4.
After that, the convolution blocks are flattened with a spatial
dimension of 4 X 4 X 64 = 1024. The MLP was utilized to
reduce the dimension from 1024 to 4 (for Bellman Circuit)
and 8 (for Real Amplitudes Circuit), according to the num-
ber of parameters associated to quantum circuit. The Bellman
and Real Amplitudes Quantum Circuits are considered hidden
quantum layers. These 4 and 8 classical values derived from
the last fully connected layer in the Encoder are injected into
the parameterized rotation gates of the corresponding quan-
tum circuits. The quantum circuits are 4 — qubits quantum
systems. We incorporate IBM AerSimulator as a backend
simulator on the Qiskit framework with 512 shots for estimat-
ing the probabilities corresponding to distinct basis vectors.
We utilize the Pytorch and Qiskit framework to implement
the HQC architecture. The training iterations are kept as 100
with the learning rate le — 5 while taking the batch size as 16.
We utilize the Fl-score and Overall Accuracy as evaluation
metrics.

3.3. Segmentation Results

In this section, we report the quantitative (see Figure 6) and
qualitative (see Table 1) assessment of the proposed HQC ar-
chitecture by utilizing the Bellman circuit and Real Amplitude
Circuits as a hidden quantum layer. A comparative analysis is
performed with the classical counterpart of the HQC architec-
ture. Notice that, for the classical counterpart, we discard the
hidden quantum layer and integrate the Encoder and Decoder
with the fully connected layers as a bottleneck in the latent
space. Quantitatively, the proposed architecture with the Real
Amplitude Circuits as a hidden quantum layer achieved the
highest overall accuracy (OA) of 93.93, and the corresponding
F1 score was 0.8477. The Bellman circuit achieved an accu-
racy of 93.13 with an F1-score of about 0.8248. The classical
counterpart of the HQC architecture achieved an overall accu-
racy of 89.55 with an F1-score of 0.7407. The proposed archi-
tecture with two quantum circuits as a hidden layer improved
the F1-Score of about 11% (for Bellman Circuit) and 14% (for
Real Amplitudes Circuit), respectively, thereby demonstrating
the potential of quantum circuits as rich feature descriptors for
radar sounder data.
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Fig. 6. The Radargram (a), Ground Truth (b), and associated prediction maps are highlighted in this figure (from left to right).
(CReSIS. 2023. MCoRDS and MCoRDS3 Data, Lawrence, Kansas, USA. Digital Media. http://data.cresis.ku.edu/.)

Qualitatively, the proposed HQC architecture accurately
distinguished the bedrock from the noise for the patch-wise
segmentation (see Figure 6). The classical counterpart was un-
able to distinguish bedrock from noise in several test samples.
It was observed that the classical counterpart was unstable
during training, whereas, the quantum layer in the latent space
successfully stabilized the training. Therefore, the quantum
circuits as bottleneck connectors (between the Encoder and
Decoder) established a contextually rich back-and-forth in-
formation processing system for the UNet-like architecture
without using the skip connections in the other part of the
networks. While experimenting with the FC layer as a bottle-
neck connector, the contextual richness of the overall learning
mechanism was decreased when discarding the skip connec-
tions. Therefore, it would be worth experimenting with the
quantum circuits as skip connectors in different parts of the
network for a UNET-like Encoder-Decoder architectural set-
ting against the classical skip connectors.

4. CONCLUSIONS

In this work, we explore the potential of QC as a hidden quan-
tum layer for the HQC architecture in the context of radar
sounder signal segmentation. The quantum layers demon-
strate the capability of achieving the highest accuracy with
Real Amplitudes Quantum circuits on the HQC setting, against
the classical counterpart. In particular, the Fl-score is im-
proved by 14%. However, due to the lack of current hardware
infrastructure to handle large-scale quantum circuit-based al-
gorithms, the spatial dimension of the patch size is restricted
to 50 x 50 pixels. In future work, we will explore the exper-
imental setup for the quantum layers as skip connectors for
the UNET-like architecture in comparison to the classical skip
connectors for investigating the contextual improvement of the
overall training with the hybrid setting.
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