001029396 001__ 1029396
001029396 005__ 20241002205050.0
001029396 020__ $$a9781003382010
001029396 037__ $$aFZJ-2024-05104
001029396 1001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b0$$ufzj
001029396 245__ $$aProven Approaches of Using Innovative High-Performance Computing Architectures in Remote Sensing
001029396 260__ $$aBoca Raton$$bCRC Press$$c2024
001029396 29510 $$aSignal and Image Processing for Remote Sensing
001029396 300__ $$a432
001029396 3367_ $$2ORCID$$aBOOK_CHAPTER
001029396 3367_ $$07$$2EndNote$$aBook Section
001029396 3367_ $$2DRIVER$$abookPart
001029396 3367_ $$2BibTeX$$aINBOOK
001029396 3367_ $$2DataCite$$aOutput Types/Book chapter
001029396 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1727863965_29583
001029396 520__ $$aThis chapter underscores the essential role of high-performance computing (HPC) in the realm of remote sensing (RS), effectively addressing the growing demand for processing extensive and complex datasets. HPC, empowered by parallel programming paradigms, significantly speeds up a range of tasks, including image processing, data mining, and modeling, vital in the context of Earth observation (EO) applications. More notably, HPC can build even better models by employing systematic hyperparameter optimization methods that are computationally demanding, given a large search space. Furthermore, with deep learning (DL) progressively gravitating toward foundation models, extensively trained on substantial datasets, endowing them with the remarkable capability to transfer knowledge across diverse tasks, there is an increased demand for computational resources in the fast-paced landscape of artificial intelligence (AI) and consequently a heightened interest in HPC. Solutions to provide optimized resources on HPC resources, however, have increased their complexity and heterogeneity. This chapter highlights the advantages of embracing HPC while acknowledging current challenges, solutions, and future trends.
001029396 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001029396 588__ $$aDataset connected to DataCite
001029396 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b1$$ufzj
001029396 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b2$$ufzj
001029396 7001_ $$0P:(DE-HGF)0$$aBenediktsson, Jón Atli$$b3
001029396 8564_ $$uhttps://doi.org/10.1201/9781003382010
001029396 8564_ $$uhttps://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.pdf$$yRestricted
001029396 8564_ $$uhttps://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.gif?subformat=icon$$xicon$$yRestricted
001029396 8564_ $$uhttps://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001029396 8564_ $$uhttps://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.jpg?subformat=icon-180$$xicon-180$$yRestricted
001029396 8564_ $$uhttps://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.jpg?subformat=icon-640$$xicon-640$$yRestricted
001029396 909CO $$ooai:juser.fz-juelich.de:1029396$$pVDB
001029396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b0$$kFZJ
001029396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b1$$kFZJ
001029396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b2$$kFZJ
001029396 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001029396 9141_ $$y2024
001029396 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001029396 980__ $$acontb
001029396 980__ $$aVDB
001029396 980__ $$aI:(DE-Juel1)JSC-20090406
001029396 980__ $$aUNRESTRICTED