001     1029396
005     20241002205050.0
020 _ _ |a 9781003382010
037 _ _ |a FZJ-2024-05104
100 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 0
|u fzj
245 _ _ |a Proven Approaches of Using Innovative High-Performance Computing Architectures in Remote Sensing
260 _ _ |a Boca Raton
|c 2024
|b CRC Press
295 1 0 |a Signal and Image Processing for Remote Sensing
300 _ _ |a 432
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1727863965_29583
|2 PUB:(DE-HGF)
520 _ _ |a This chapter underscores the essential role of high-performance computing (HPC) in the realm of remote sensing (RS), effectively addressing the growing demand for processing extensive and complex datasets. HPC, empowered by parallel programming paradigms, significantly speeds up a range of tasks, including image processing, data mining, and modeling, vital in the context of Earth observation (EO) applications. More notably, HPC can build even better models by employing systematic hyperparameter optimization methods that are computationally demanding, given a large search space. Furthermore, with deep learning (DL) progressively gravitating toward foundation models, extensively trained on substantial datasets, endowing them with the remarkable capability to transfer knowledge across diverse tasks, there is an increased demand for computational resources in the fast-paced landscape of artificial intelligence (AI) and consequently a heightened interest in HPC. Solutions to provide optimized resources on HPC resources, however, have increased their complexity and heterogeneity. This chapter highlights the advantages of embracing HPC while acknowledging current challenges, solutions, and future trends.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
700 1 _ |a Benediktsson, Jón Atli
|0 P:(DE-HGF)0
|b 3
856 4 _ |u https://doi.org/10.1201/9781003382010
856 4 _ |u https://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1029396/files/Book_Chapter2.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1029396
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21