001     10294
005     20200423202756.0
024 7 _ |a pmid:20370181
|2 pmid
024 7 _ |a 10.1063/1.3321437
|2 DOI
024 7 _ |a WOS:000276210200029
|2 WOS
024 7 _ |a 2128/16758
|2 Handle
037 _ _ |a PreJuSER-10294
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Instruments & Instrumentation
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Morawski, I.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB75516
245 _ _ |a Simultaneously measured signals in scanning probe microscopy with a needle sensor: Frequency shift and tunneling current
260 _ _ |a [S.l.]
|b American Institute of Physics
|c 2010
300 _ _ |a 033703
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Review of Scientific Instruments
|x 0034-6748
|0 5309
|y 3
|v 81
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a atomic force microscopy
653 2 0 |2 Author
|a sensors
653 2 0 |2 Author
|a signal processing
700 1 _ |a Voigtländer, B.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5601
773 _ _ |a 10.1063/1.3321437
|g Vol. 81, p. 033703
|p 033703
|q 81<033703
|0 PERI:(DE-600)1472905-2
|t Review of scientific instruments
|v 81
|y 2010
|x 0034-6748
856 7 _ |u http://dx.doi.org/10.1063/1.3321437
856 4 _ |u https://juser.fz-juelich.de/record/10294/files/1.3321437.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10294/files/1.3321437.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10294/files/1.3321437.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10294/files/1.3321437.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10294/files/1.3321437.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:10294
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)120553
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21