001029431 001__ 1029431
001029431 005__ 20250203103235.0
001029431 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05123
001029431 037__ $$aFZJ-2024-05123
001029431 041__ $$aEnglish
001029431 1001_ $$0P:(DE-Juel1)190289$$aStern, Christian$$b0$$eCorresponding author$$ufzj
001029431 1112_ $$aXVIIIth Conference of the European Ceramic Society$$cLyon$$d2023-07-02 - 2023-07-06$$gECERS2023$$wFrance
001029431 245__ $$aReactive Field Assisted Sintering (FAST/SPS) of various garnets for plasma etching applications
001029431 260__ $$c2023
001029431 3367_ $$033$$2EndNote$$aConference Paper
001029431 3367_ $$2DataCite$$aOther
001029431 3367_ $$2BibTeX$$aINPROCEEDINGS
001029431 3367_ $$2DRIVER$$aconferenceObject
001029431 3367_ $$2ORCID$$aLECTURE_SPEECH
001029431 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1722495966_13884$$xAfter Call
001029431 520__ $$aPlasma etching is a crucial step in semiconductor manufacturing. When the plasma is applied on the wafer, chamber cleanliness and reproducibility of the etching process are essential. The trend towards more aggressive etching environments requires advanced chamber components with excellent plasma resistance in the etching chamber. To tackle this issue, there is an increasing interest of better understanding the specific erosion mechanisms of etch resistant ceramics. At the current state of development, Yttrium-Aluminum-Garnet (YAG) shows promise in highly aggressive etching environments. In this study, we present a novel approach to manufacture highly dense YAG ceramics by means of reactive field assisted sintering technology/ spark plasma sintering (reactive FAST/SPS) of the respective oxides. FAST/SPS offers several advantages over conventional sintering techniques, e.g. shorter processing times, energy and cost efficiency as well as consolidation close to the theoretical density. To better understand the plasma resistance of YAG alternative lanthanides (Lu, Yb, Er) aluminates were created to identify the influence of the lanthanide atom in the YAG type structure on the plasma-material response. For applied characterization, samples were exposed to fluorine based etching plasmas (CF4/O2) using an inductively coupled plasma (ICP) etch chamber. The resulting topography and induced chemical reactions were characterized by atomic force microscopy (AFM) and secondary in mass spectrometry (SIMS) respectively.
001029431 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001029431 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
001029431 7001_ $$0P:(DE-Juel1)174079$$aKindelmann, Moritz$$b1$$ufzj
001029431 7001_ $$0P:(DE-Juel1)194161$$aSchwab, Christian$$b2$$ufzj
001029431 7001_ $$0P:(DE-Juel1)194615$$aPark, Inhee$$b3$$ufzj
001029431 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4$$ufzj
001029431 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
001029431 8564_ $$uhttps://juser.fz-juelich.de/record/1029431/files/ECERS_Lyon23_Stern.pdf$$yOpenAccess
001029431 8564_ $$uhttps://juser.fz-juelich.de/record/1029431/files/ECERS_Lyon23_Stern.gif?subformat=icon$$xicon$$yOpenAccess
001029431 8564_ $$uhttps://juser.fz-juelich.de/record/1029431/files/ECERS_Lyon23_Stern.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001029431 8564_ $$uhttps://juser.fz-juelich.de/record/1029431/files/ECERS_Lyon23_Stern.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001029431 8564_ $$uhttps://juser.fz-juelich.de/record/1029431/files/ECERS_Lyon23_Stern.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001029431 909CO $$ooai:juser.fz-juelich.de:1029431$$pdriver$$pVDB$$popen_access$$popenaire
001029431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190289$$aForschungszentrum Jülich$$b0$$kFZJ
001029431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174079$$aForschungszentrum Jülich$$b1$$kFZJ
001029431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194161$$aForschungszentrum Jülich$$b2$$kFZJ
001029431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194615$$aForschungszentrum Jülich$$b3$$kFZJ
001029431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
001029431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
001029431 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001029431 9141_ $$y2024
001029431 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001029431 920__ $$lyes
001029431 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001029431 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
001029431 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x2
001029431 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x3
001029431 980__ $$aconf
001029431 980__ $$aVDB
001029431 980__ $$aUNRESTRICTED
001029431 980__ $$aI:(DE-Juel1)IEK-1-20101013
001029431 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001029431 980__ $$aI:(DE-Juel1)IEK-9-20110218
001029431 980__ $$aI:(DE-82)080011_20140620
001029431 9801_ $$aFullTexts