REACTIVE FIELD ASSISTED SINTERING (FAST/SPS) OF VARIOUS GARNETS FOR PLASMA ETCHING APPLICATIONS

XVIII ECerS LYON | 6/29/2023

CHRISTIAN STERN, MORITZ KINDELMANN, CHRISTIAN SCHWAB, INHEE PARK, MARTIN BRAM, OLIVIER GUILLON

MOTIVATION - PLASMA ETCHING

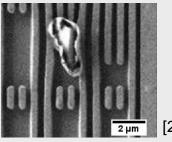
YAG (Y₃Al₅O₁₂) is an advanced material used in **plasma etching** chambers

Continuous improvement of the etching process over the last decades puts higher demands on etching conditions:

- High cleanliness
- Wafer to wafer reproducibility

For further miniaturization of transistors:

need for materials with higher plasma resistance and advanced etching devices


Hypothesis: Plasma resistance of YAG can be improved by replacement of Y by rare earth ions (Er, Yb, Lu)

Etching chamber

Producer® Selectra® Etch

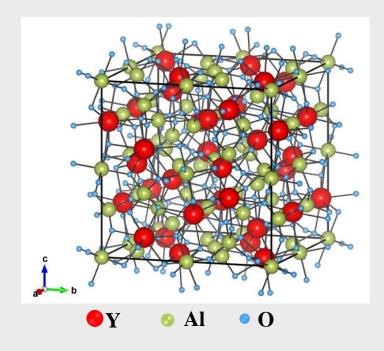
"Killer defect" on wafer

^{1.} https://www.appliedmaterials.com/us/en/product-library/producer-selectra-etch.html#carousel-94c4c76187-item-f3e253bb6e-tabpanel

^{2.} Hong Shih. "A Systematic Study and Characterization of Advanced Corrosion Resistance [...]." Corrosion Resistance. DOI: 10.5772/31992

OBJECTIVES

- Substitution of Y in YAG with rare earth elements
- Synthesis of various garnets by reactive FAST/SPS
- Systematic etching study in fluorine based etching plasma
- Investigation of plasma erosion by AFM, SIMS and TEM


Produced samples:

Sample	Composition
YAG	$Y_3AI_5O_{12}$
YbAG	$Yb_3Al_5O_{12}$
LuAG	Lu ₃ Al ₅ O ₁₂
ErAG	$\mathrm{Er_{3}Al_{5}O_{12}}$

Relevant ions:

lon	Atomic mass [u]	Effective ionic radius [Å]	
Υ3+	88.906	1.019	
Er³+	167.26	1.004	
Yb ³⁺	173.05	0.985	ra
Lu ³⁺	174.97	0.977	[3

YAG: crystal structure

Generated from ICSD No. 67102 with VESTA3. Representation not true to scale.

FAST/SPS: Field assisted sintering technology/ Spark plasma sintering. **AFM**: Atomic force microscopy.

SIMS: Secondary ion mass spectrometry. TEM: Transmission electron microscopy

^{3.} Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976. 32(5): p. 751-767.

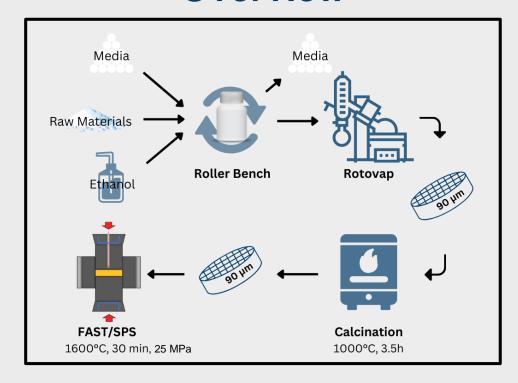
SYNTHESIS

Processing

Raw materials:

• Alumina: 99.999% purity; Heraeus CONAMIC NA

• Yttria: 99.999% purity; Neo Performance Materials


• Lu₂O₃, Yb₂O₃, Yb₂O₃: 99.999% purity; Neo Performance Materials

Homogenization: 24h on roller bench

Drying: Rotovap

Calcination: 1000°C, 3.5h

Overview

SYNTHESIS

Reactive Field Assisted Sintering Technology/ Spark Plasma Sintering (Reactive FAST/SPS)

Overall chemical reaction:

$$3 Y_2 O_3 + 5 A l_2 O_3 \rightarrow 2 Y_3 A l_5 O_{12}$$
 (YAG)

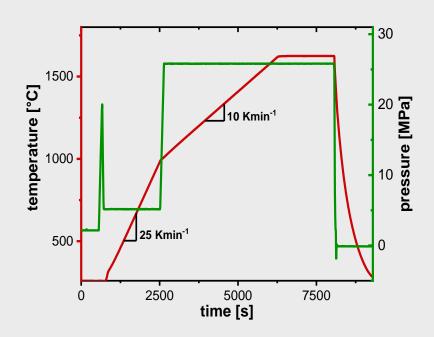
$$2 Y_2 O_3 + Al_2 O_3 \rightarrow Y_4 Al_2 O_9 (YAM)$$

$$Y_4Al_2O_9 + Al_2O_3 \rightarrow 4 YAlO_3 (YAP)$$

$$3 \text{ YAlO}_3 + \text{Al}_2 \text{O}_3 \rightarrow \text{ Y}_3 \text{Al}_5 \text{O}_{12} (\text{YAG})$$

$$(T = 1000 - 1600 °C)$$

FAST/SPS Parameters:

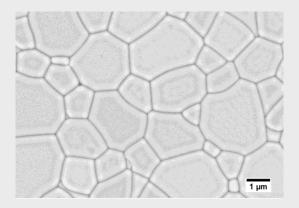

Heating: 25 Kmin⁻¹, 5 MPa, RT-1000°C

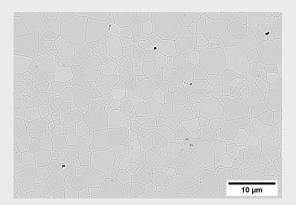
10 Kmin⁻¹, 25 MPa, to 1600°C

Dwell: 30 min, 25 MPa, 1600°C

Cooling: switch off power source

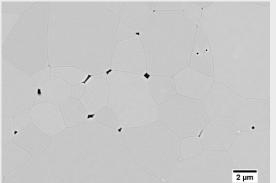
FAST/SPS data

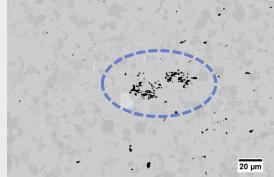

FCT HP-D 5



Scanning electron microscopy (SEM)

Microstructure:


- homogenous, dense (p~99.9%)
- Grain size: $d_{50} = 2-3 \mu m$
- Small amounts of residual alumina (~1 %)



Page 6

YAG (thermally etched)

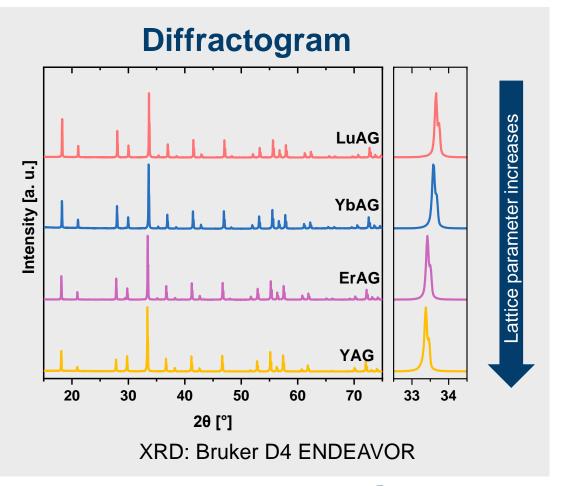
LuAG (thermally etched) with residual alumina

Microscope: Ultra 55 (Carl Zeiss AG, Oberkochen, Germany)

X-Ray diffraction (XRD)

- Crystal structure: garnet (cubic)
- Space group: la-3d
- Lattice parameters:

YAG: a = 12.0163 Å


ErAG: a = 11.9827 Å

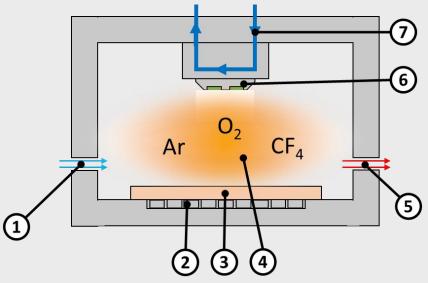
YbAG: a = 11.9182 Å

LuAG: a = 11.9064 Å

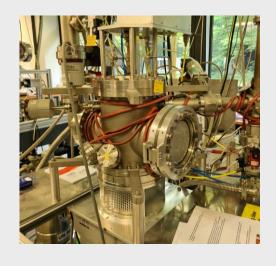
Possible impact on induced chemical gradient

- Residual alumina not detectable
- No intermediates (YAM, YAP etc.)

ICSD: YAG: col. code 67102. ErAG: col. code 170147. YbAG: col. Code 170159. LuAG: col code 23846.



Page 7


PLASMA ETCHING

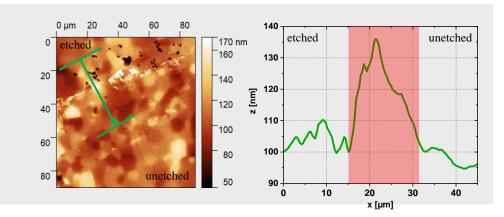
Experimental setup and plasma parameters

ICP-etching chamber

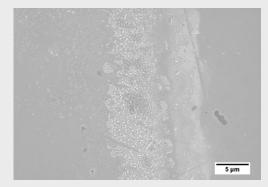
(1) Gas inlet (2) ICP generator (3) Protective window(4) Plasma (5) Vacuum pump (6) Sample holder (7)Water cooling system

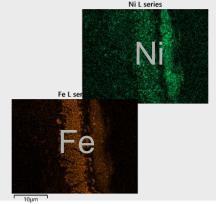
Samples masked with Kapton® tape

Plasma parameters:

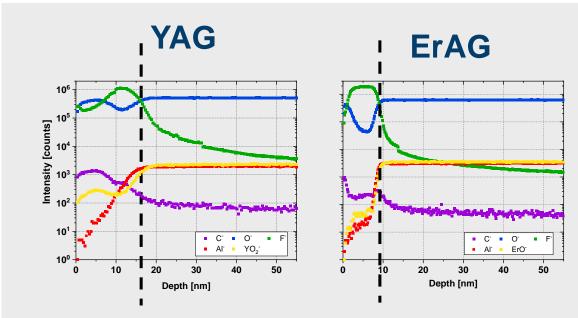

P _{ICP} [W]	t _{etch} [min]	p [mbar]	U _B [V]	CF ₄ [sccm]	Ar [sccm]	O ₂ [sccm]
600	120	0.02	-150	1.0	5.0	0.3

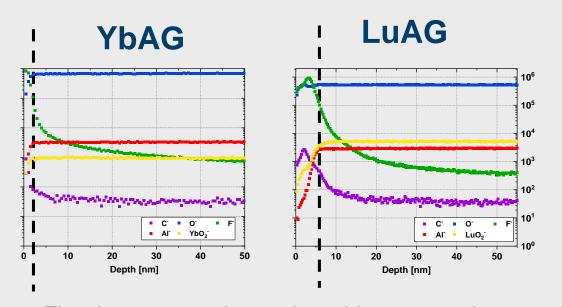
Characterization of plasma etched samples – AFM + SEM/EDS


Atomic force microscopy (AFM)


- Tapping mode
- No physical erosion detected
- Contamination covering the etch step
- Black "dots" in etched part: former alumina phase

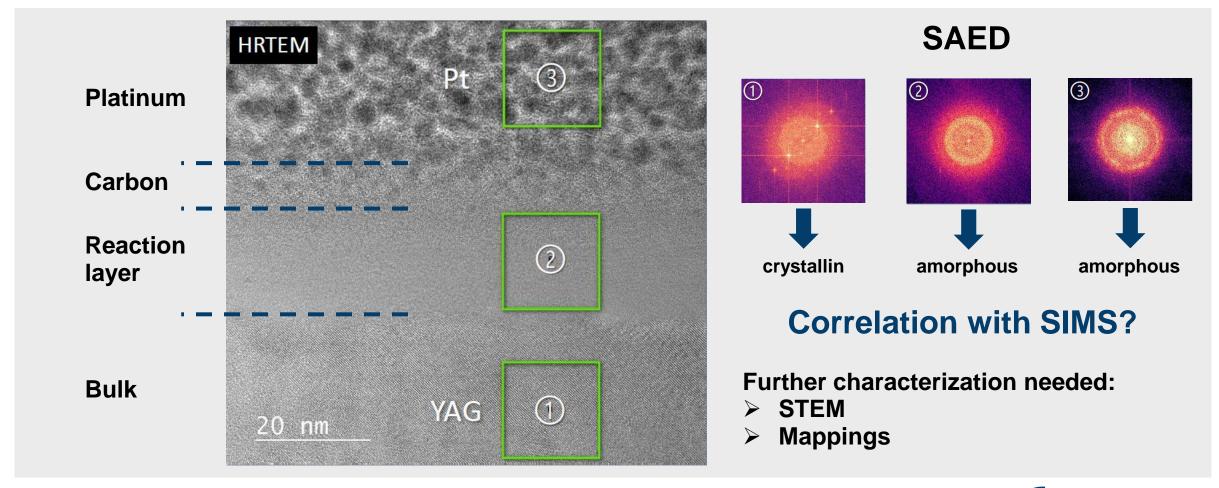
Scanning electron microscopy (SEM/EDS)


- Contamination consists of metal ions
- Eroded from sample holder/ chamber



Characterization of plasma etched samples – SIMS

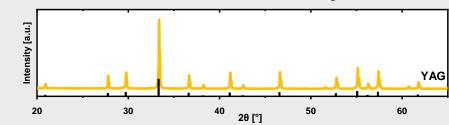
- SIMS enables characterisation of induced chemical gradient
- Thickness of reaction layer could be significantly reduced

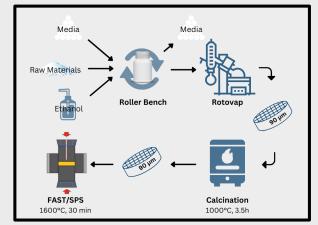


Fluorine penetration reduced in rare earth garnets

CHARACTERIZATION: REACTION LAYER IN YAG

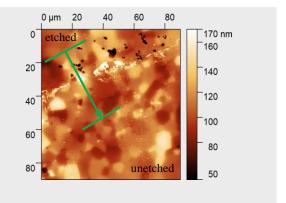
Transmission Electron Microscopy (HRTEM) – In cooperation with GfE Aachen


Page 11


Microscope: JEOL – JEM F200

SUMMARY

Synthesis


- Succesful synthesis of different garnets by means of reactive FAST/SPS
- No intermediates (YAM, YAP) and only small amounts of residual alumina
- Close to theoretical density

Plasma etching

- Samples were etched in a fluorine based plasma (CF₄/Ar/O₂)
- No physical erosion detected in AFM
- Thickness of reaction layer reduced in rare earth garnets compared to YAG

