001029435 001__ 1029435
001029435 005__ 20250203133155.0
001029435 0247_ $$2doi$$a10.1002/smtd.202400598
001029435 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05124
001029435 0247_ $$2pmid$$a39075823
001029435 0247_ $$2WOS$$aWOS:001280201100001
001029435 037__ $$aFZJ-2024-05124
001029435 082__ $$a620
001029435 1001_ $$0P:(DE-HGF)0$$aCorley-Wiciak, Cedric$$b0
001029435 245__ $$aFull Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopy
001029435 260__ $$aWeinheim$$bWILEY-VCH Verlag GmbH & Co. KGaA$$c2024
001029435 3367_ $$2DRIVER$$aarticle
001029435 3367_ $$2DataCite$$aOutput Types/Journal article
001029435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1735804552_23763
001029435 3367_ $$2BibTeX$$aARTICLE
001029435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029435 3367_ $$00$$2EndNote$$aJournal Article
001029435 520__ $$aLattice strain in crystals can be exploited to effectively tune their physical properties. In microscopic structures, experimental access to the full strain tensor with spatial resolution at the (sub-)micrometer scale is at the same time very interesting and challenging. In this work, how scanning X-ray diffraction microscopy, an emerging model-free method based on synchrotron radiation, can shed light on the complex, anisotropic deformation landscape within three dimensional (3D) microstructures is shown. This technique allows the reconstruction of all lattice parameters within any type of crystal with submicron spatial resolution and requires no sample preparation. Consequently, the local state of deformation can be fully quantified. Exploiting this capability, all components of the strain tensor in a suspended, strained Ge1 − xSnx /Ge microdisk are mapped. Subtle elastic deformations are unambiguously correlated with structural defects, 3D microstructure geometry, and chemical variations, as verified by comparison with complementary electron microscopy and finite element simulations. The methodology described here is applicable to a wide range of fields, from bioengineering to metallurgy and semiconductor research.
001029435 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001029435 536__ $$0G:(GEPRIS)299480227$$aDFG project G:(GEPRIS)299480227 - SiGeSn Laser für die Silizium Photonik (299480227)$$c299480227$$x1
001029435 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029435 7001_ $$0P:(DE-HGF)0$$aZoellner, Marvin H.$$b1
001029435 7001_ $$0P:(DE-HGF)0$$aCorley-Wiciak, Agnieszka A.$$b2
001029435 7001_ $$0P:(DE-HGF)0$$aRovaris, Fabrizio$$b3
001029435 7001_ $$0P:(DE-HGF)0$$aZatterin, Edoardo$$b4
001029435 7001_ $$0P:(DE-HGF)0$$aZaitsev, Ignatii$$b5
001029435 7001_ $$0P:(DE-HGF)0$$aSfuncia, Gianfranco$$b6
001029435 7001_ $$0P:(DE-HGF)0$$aNicotra, Giuseppe$$b7
001029435 7001_ $$0P:(DE-HGF)0$$aSpirito, Davide$$b8
001029435 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b9
001029435 7001_ $$0P:(DE-HGF)0$$aManganelli, Costanza L.$$b10
001029435 7001_ $$0P:(DE-HGF)0$$aMarzegalli, Anna$$b11
001029435 7001_ $$0P:(DE-HGF)0$$aSchulli, Tobias U.$$b12
001029435 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b13
001029435 7001_ $$0P:(DE-HGF)0$$aMontalenti, Francesco$$b14
001029435 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b15$$eCorresponding author
001029435 7001_ $$0P:(DE-HGF)0$$aRichter, Carsten$$b16
001029435 773__ $$0PERI:(DE-600)2884448-8$$a10.1002/smtd.202400598$$gp. 2400598$$n12$$p2400598$$tSmall Methods$$v8$$x2366-9608$$y2024
001029435 8564_ $$uhttps://juser.fz-juelich.de/record/1029435/files/Small%20Methods%20-%202024%20-%20Corley%E2%80%90Wiciak%20-%20Full%20Picture%20of%20Lattice%20Deformation%20in%20a%20Ge1%20xSnx%20Micro%E2%80%90Disk%20by%205D%20X%E2%80%90ray.pdf
001029435 8564_ $$uhttps://juser.fz-juelich.de/record/1029435/files/paper_V3.pdf$$yPublished on 2024-12-19. Available in OpenAccess from 2025-12-19.
001029435 8564_ $$uhttps://juser.fz-juelich.de/record/1029435/files/paper_V3.gif?subformat=icon$$xicon$$yPublished on 2024-12-19. Available in OpenAccess from 2025-12-19.
001029435 8564_ $$uhttps://juser.fz-juelich.de/record/1029435/files/paper_V3.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-12-19. Available in OpenAccess from 2025-12-19.
001029435 8564_ $$uhttps://juser.fz-juelich.de/record/1029435/files/paper_V3.jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-12-19. Available in OpenAccess from 2025-12-19.
001029435 8564_ $$uhttps://juser.fz-juelich.de/record/1029435/files/paper_V3.jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-12-19. Available in OpenAccess from 2025-12-19.
001029435 909CO $$ooai:juser.fz-juelich.de:1029435$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001029435 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001029435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b9$$kFZJ
001029435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b13$$kFZJ
001029435 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001029435 9141_ $$y2024
001029435 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001029435 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001029435 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-22$$wger
001029435 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001029435 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL METHODS : 2022$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001029435 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL METHODS : 2022$$d2024-12-18
001029435 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001029435 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001029435 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001029435 980__ $$ajournal
001029435 980__ $$aVDB
001029435 980__ $$aUNRESTRICTED
001029435 980__ $$aI:(DE-Juel1)PGI-9-20110106
001029435 980__ $$aI:(DE-Juel1)PGI-10-20170113
001029435 980__ $$aI:(DE-82)080009_20140620
001029435 9801_ $$aFullTexts