001029437 001__ 1029437
001029437 005__ 20250203133155.0
001029437 0247_ $$2doi$$a10.1021/acsmaterialslett.4c01145
001029437 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05126
001029437 0247_ $$2WOS$$aWOS:001271966800001
001029437 037__ $$aFZJ-2024-05126
001029437 082__ $$a540
001029437 1001_ $$0P:(DE-HGF)0$$aZhao, Tong$$b0
001029437 245__ $$aSodium Metal Oxyhalides $Na M OCl_4 ( M = Nb, Ta)$ with High Ionic Conductivities
001029437 260__ $$aWashington, DC$$bACS Publications$$c2024
001029437 3367_ $$2DRIVER$$aarticle
001029437 3367_ $$2DataCite$$aOutput Types/Journal article
001029437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731502117_25747
001029437 3367_ $$2BibTeX$$aARTICLE
001029437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001029437 3367_ $$00$$2EndNote$$aJournal Article
001029437 500__ $$aZudem unterstützt durch BMBF Projekt (03XP0525B) und
001029437 520__ $$aHalide-based ionic conductors have attracted growing interest as solid electrolyte candidates because of their suggested electrochemical oxidation stability and deformability. However, most of the discovered sodium metal halides exhibit relatively low ionic conductivities. To address this, a new class of mechanochemically stabilized, low-crystalline sodium metal oxyhalides $NaMOCl_4 (M = Nb, Ta)$ is developed. By using the combination of scanning electron microscopy–energy dispersive X-ray spectroscopy, X-ray diffraction, pair distribution function analysis, Raman spectroscopy, and nuclear magnetic resonance spectroscopy, we qualitatively explored the composition and local structure of these oxyhalides. Notably, $NaNbOCl_4$ and $NaTaOCl_4$ exhibit high ionic conductivities of 1.2 and 1.5 $mScm^{–1}$, respectively. Although the instability of $NaMOCl_4$ against Na excludes their use as stand-alone separators in solid-state sodium metal batteries, the successful operation of a solid-state battery employing $NaTaOCl_4$ as a catholyte at room temperature demonstrates that $NaMOCl_4$ is a promising catholyte material.
001029437 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001029437 536__ $$0G:(GEPRIS)459785385$$aDFG project G:(GEPRIS)459785385 - Röntgenpulverdiffraktometer (459785385)$$c459785385$$x1
001029437 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001029437 7001_ $$0P:(DE-HGF)0$$aSamanta, Bibek$$b1
001029437 7001_ $$0P:(DE-HGF)0$$ade Irujo-Labalde, Xabier Martinez$$b2
001029437 7001_ $$0P:(DE-HGF)0$$aWhang, Grace$$b3
001029437 7001_ $$0P:(DE-HGF)0$$aYadav, Neelam$$b4
001029437 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin$$b5$$ufzj
001029437 7001_ $$0P:(DE-HGF)0$$aAdelhelm, Philipp$$b6
001029437 7001_ $$0P:(DE-HGF)0$$aHansen, Michael Ryan$$b7
001029437 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b8$$eCorresponding author$$ufzj
001029437 773__ $$0PERI:(DE-600)3004109-0$$a10.1021/acsmaterialslett.4c01145$$gp. 3683 - 3689$$p3683 - 3689$$tACS materials letters$$v6$$x2639-4979$$y2024
001029437 8564_ $$uhttps://juser.fz-juelich.de/record/1029437/files/revised_manuscript.pdf$$yPublished on 2024-06-16. Available in OpenAccess from 2025-06-16.
001029437 8564_ $$uhttps://juser.fz-juelich.de/record/1029437/files/revised_manuscript.gif?subformat=icon$$xicon$$yPublished on 2024-06-16. Available in OpenAccess from 2025-06-16.
001029437 8564_ $$uhttps://juser.fz-juelich.de/record/1029437/files/revised_manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-06-16. Available in OpenAccess from 2025-06-16.
001029437 8564_ $$uhttps://juser.fz-juelich.de/record/1029437/files/revised_manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-06-16. Available in OpenAccess from 2025-06-16.
001029437 8564_ $$uhttps://juser.fz-juelich.de/record/1029437/files/revised_manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-06-16. Available in OpenAccess from 2025-06-16.
001029437 909CO $$ooai:juser.fz-juelich.de:1029437$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001029437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b5$$kFZJ
001029437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b8$$kFZJ
001029437 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001029437 9141_ $$y2024
001029437 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001029437 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001029437 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001029437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MATER LETT : 2022$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001029437 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS MATER LETT : 2022$$d2025-01-07
001029437 920__ $$lyes
001029437 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001029437 980__ $$ajournal
001029437 980__ $$aVDB
001029437 980__ $$aUNRESTRICTED
001029437 980__ $$aI:(DE-Juel1)IMD-4-20141217
001029437 9801_ $$aFullTexts