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• Sleep disturbance is considered a potential risk
factor for cognitive decline and dementia1,2.

• Large-scale studies are needed to reveal the
relationship.

• Previous large-scale studies (N ≈ 40,000 & 500,000)
using the UK-Biobank data highlighted a significant,
non-linear relationship between sleep duration and
cognitive performance but with a small effect
size3,4.

Aim:
In this study, we performed machine learning
(ML) analysis based on both sleep duration and
sleep efficiency from self-reported questionnaires
and polysomnography and brain structure data
using the ENIGMA-Sleep5 data to predict
cognitive scores at the individual level.

• Stroop test score can be weakly (XGBoost R2=0.13) but stably (out-of-
sample validation R=0.18) predicted by sleep measurements, brain structure,
and demographic data based on non-linear ML models.

• The nonlinear relationship between sleep measurements and cognitive
measurements can be revealed by model explanation.

• Model explanation showed:
∘ Predicted variance is driven by the COMPLEX interaction between sleep,

brain, and demographic data (mainly age).
∘ Older participants with shorter sleep and younger participants with longer

sleep contribute mainly to the prediction of Stroop and memory test score.

Non-linear machine learning models showed Sleep + Demographic + Brain Structure can predict Stroop and memory test scores

Figure 1: Non-linear models showed much better prediction compared to ridge regression on SHIP-Trend. Results of prediction of Stroop (1A) and memory (1B).
Figure 2: Out-of-sample validation by XGBoost on Liege (2A: Stroop, 2B: memory) and Karolinska (2C: memory).

Model comparison by features in SHIP-Trend by XGBoost

Figure 3: Both Stroop test and memory test scores can be
predicted with sleep, brain structure, and demographic data by the
complex non-linear model. (3A: Stroop, 3B: Memory)

Model explanation by SHAP in SHIP-Trend by XGBoost

Figure 4: Feature importance based on SHAP 
value. (Model input: Sleep + Demographic 
information)

Figure 5: Feature interactions showed by SHAP 
value.
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ns: p <= 1.00e+00; *: 1.00e-02 < p <= 5.00e-02 ; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04 (same below)

Gap:
• These studies were primarily cross-sectional and

limited to a UK-based sample, thereby constraining
the generalizability of the findings.

• Results from conventional statistical approaches
are missing inter-individual variability.

• Machine learning methods enable individual-level
predictions and can validate models on unseen
data, thus providing a more robust analytical
framework.

Sleep
Brain

SHIP-Trend Liege Karolinska

Sample Size (N) 831 192 48

Gender (F/M) 396/435 99/93 28/20

Age Range
(Mean ± SD)

21-81
(52.7 ± 13.5)

50-82
(64.0 ± 7.1)

21-75
(55.4 ± 21.1)

Stroop 
Interference Score 

(second)

1-113
(20.2 ± 11.4)

-5.3-152
(38.9 ± 23.4) \

Memory Test 
Accuracy (%) 69.6 ± 15.9 81.6 ± 9.2 81.2 ± 15.2

Demographic

1A 1B 2A 2B 2C

3A 3B 4 5

ENIGMA-Sleep Datasets
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