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Abstract

Neural activity at the population level is commonly studied experimentally through measurements of
electric brain signals like local field potentials (LFPs), or electroencephalography (EEG) signals. To
allow for comparison between observed and simulated neural activity it is therefore important that
simulations of neural activity can accurately predict these brain signals. Simulations of neural ac-
tivity at the population level often rely on point-neuron network models or firing-rate models. While
these simplified representations of neural activity are computationally efficient, they lack the explicit
spatial information needed for calculating LFP/EEG signals. Different heuristic approaches have
been suggested for overcoming this limitation, but the accuracy of these approaches has not fully
been assessed. One such heuristic approach, the so-called kernel method, has previously been
applied with promising results and has the additional advantage of being well-grounded in the bio-
physics underlying electric brain signal generation. It is based on calculating rate-to-LFP/EEG ker-
nels for each synaptic pathway in a network model, after which LFP/EEG signals can be obtained
directly from population firing rates. This amounts to a massive reduction in the computational effort
of calculating brain signals because the brain signals are calculated for each population instead of
for each neuron. Here, we investigate how and when the kernel method can be expected to work,
and present a theoretical framework for predicting its accuracy. We show that the relative error of
the brain signal predictions is a function of the single-cell kernel heterogeneity and the spike-train
correlations. Finally, we demonstrate that the kernel method is most accurate for the dominating
brain signal contributions. We thereby further establish the kernel method as a promising approach
for calculating electric brain signals from large-scale neural simulations.

+ 1. Introduction

2 Science is at its most productive when models can make experimental predictions so that ex-
s perimental results can inform and improve the models. Measurable brain signals should therefore
+ be available from simulations of neural activity. The brain is studied at many different scales, from
s the molecular scale to behavior, and the different scales rely on models at different levels of ab-
¢ straction. It is therefore important to have well-founded methods to calculate different types of brain
7 signals, from neural simulations at different levels of abstraction (Figure 1) [Einevoll et al., 2019].

8 To study neural activity at the level of neural populations, it is common to rely on measure-
s ments of local field potentials (LFPs), which is the low-frequency part of the extracellular potential
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1 measured inside the brain, or on electroencephalography (EEG) signals, which is the extracellular
1 potential measured outside of the head. The most accurate way to calculate LFP and EEG signals
2 from simulated neural network activity is to use biophysically detailed multicompartment neuron
13 models, coupled with volume conductor theory [Holt and Koch, 1999; Einevoll et al., 2013; Ness
1 etal., 2022; Halnes et al., 2024]. For single neurons or small populations, this is in principle straight-
s forward [Hagen et al., 2018; Naess et al., 2021], and this approach has been pursued also for large
16 recurrently connected networks by a handful of studies [Reimann et al., 2013; Tomsett et al., 2015;
7 Hagen et al., 2018; Dai et al., 2020; Baratham et al., 2022; Borges et al., 2022; Rimehaug et al.,
1e  2023; Romani et al., 2024].

19 However, biophysically detailed modeling of neural activity at the population levels is extremely
20 computationally demanding, and often not viable in practice [Einevoll et al., 2019]. Therefore, when
21 studying neural network activity, it is more common to rely on simplified representations of neurons
22 and neural activity, through for example point-neuron network models [Gerstner et al., 2014; Pot-
2 jans and Diesmann, 2014; Billeh et al., 2020] or firing-rate models [Deco et al., 2008; Gerstner
2 etal, 2014; Sanz-Leon et al,, 2015]. These simplified representations of neural activity are more
»s computationally tractable and typically orders of magnitude faster than biophysically detailed simu-
2 lations [Billeh et al., 2020], but many brain signals, like the LFP and EEG signals, are generated by
27 spatially distributed neural membrane currents, which are not available from the simplified schemes
28 (since the spatial structure of individual neurons is not explicitly modeled) [Halnes et al., 2024]. An
2 important topic is therefore what is the best approach for calculating approximations of different
s brain signals from neural activity simulated from point-neuron network simulations or firing-rate
s models.
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Figure 1: Measurable signals should be available from neural simulations at different levels of abstrac-
tion. Neural circuits, here represented by a putative cortical column (panel A), are studied at different levels
of biological detail, depending on the scientific question (panel B). By using a forward model (panel C) one
can calculate measurable signals (panel D) from neural activity simulated at different levels of abstraction. In
general, calculations of such brain signals are only biophysically well-founded when using biophysically de-
tailed cell models, while simplified representations of neurons will require “heuristic” approaches where it can
be hard to estimate the accuracy of the resulting brain signal predictions.

a Several different approaches to calculate LFP/EEG/MEG signals from point-neuron or firing-
s rate models have been suggested [Deco et al., 2008; Sanz-Leon et al., 2015; Mazzoni et al., 2015;
» Hagen et al., 2016; Telenczuk et al., 2020a; Martinez-Canada et al., 2021; Glomb et al., 2022;
s Tesler et al., 2022], but quantitative evaluations of the accuracy of such approaches have often
s been hard to come by, due to the lack of “ground truth” signals to compare the approximations to. It
a7 has therefore often been unclear how well these approximations work, although there are important
s exceptions that we discuss later.

39 A common approach with a long history to get approximate LFP/EEG signals from firing-rate
« models is simply to assume that the signal is proportional to the firing rate [Deco et al., 2008]. For
« EEG/MEG signals, it is sometimes instead assumed that an equivalent current dipole is propor-
.2 tional to the firing rate, and the dipole can be inserted into a head model to obtain the EEG/MEG
« signal [Sanz-Leon et al., 2015]. Although this approach can certainly be useful, it neglects some
« basic principles in how these signals are generated, and as a result, some error will be introduced
s in the time-domain of the predicted signals [Mazzoni et al., 2015; Hagen et al., 2022; Halnes et al.,
w 2024].

a7 Hagen et al. [2016] presented the so-called “hybrid scheme”, where the neural network activity
s is first simulated in a point-neuron network, and saved to file. Afterward, in a separate step, the
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s spiking activity is replayed onto biophysically detailed cell models, from which the resulting LFP
s signals can be calculated. The hybrid scheme is a computationally expensive approach because it
st relies on representing all neurons that are within the reach of the recording electrode [Lindén et al.,
sz 2011; Kajikawa and Schroeder, 2011] with a high level of morphological and electrophysiological
ss detail. On the other hand, it is well grounded in the biophysics of extracellular signal generation.

54 Hagen et al. [2016] also used the hybrid scheme to test a “kernel approach”, where they calcu-
ss lated LFP kernels for each synaptic pathway in the model. Each population kernel represented the
s average postsynaptic LFP contribution given an action potential in the presynaptic population, and
s the LFP signal could then be approximated by convolving the firing rate of each presynaptic popula-
ss tion with the corresponding population kernel and summing the LFP contributions for each synaptic
s pathway in the model. This kernel approach was confirmed to give accurate approximations to
e the LFP, at a very low computational cost once the kernels were known because the LFP could
st be predicted directly from the firing rate of each population, instead of from the transmembrane
e currents of each individual neuron. A major drawback of this approach was that the calculation of
e the population kernels was still very computationally demanding.

64 Mazzoni et al. [2015] tested so-called “proxy” methods for calculating LFP signals (later also
es extended to EEG signals by Martinez-Canada et al. [2021]) directly from point-neuron network
e Simulations, and found that a weighted sum of synaptic currents, which are available from point-
ez neuron network simulations, could be used to predict the LFP calculated by a more comprehensive
e approach, similar to the “hybrid scheme” discussed above. The proxies were demonstrated to
e be quite accurate and provided excellent LFP predictions for the use-case considered. On the
7 other hand, they are in a sense phenomenological and typically poorly grounded in the underlying
7 biophysics of extracellular potentials, which can in some cases be a drawback.

72 Telenczuk et al. [2020a] used experimentally measured LFP kernels from spike-trigger aver-
7 aged LFP recordings, and used these kernels to approximate LFP signals, by convolving them with
7 firing rates from point-neuron network simulations. This approach has the advantage of being inde-
7 pendent of the modeling choices that are required when simulating LFP kernels [Telenczuk et al.,
7 2020a,b]. This approach was later expanded upon by Tesler et al. [2022], to also enable MEG signall
77 predictions from point-neuron network models or firing-rate models. However, kernels measured
7 from spike-triggered averages are potentially troubled by correlations, and Hagen et al. [2016] ob-
7 tained different results when calculating kernels directly, and from spike-triggered averages, even
s Wwithin the same model. This can also be directly observed, as the measured kernels are not always
st causal, which we would expect them to be given that they represent the postsynaptic contribution
& from a presynaptic spike. Further, the measured excitatory LFP kernels were proposed to be disy-
& naptic inhibitory kernels [Telenczuk et al., 2017; Telenczuk et al., 2020a], illustrating a problem with
s interpreting results based on LFP kernels from spike-triggered averages. Note that the degree to
s which measured spike-triggered LFP kernels are contaminated by correlations will depend on the
s scenario. For example for the monosynaptic thalamic activation of cortical postsynaptic target cells
&7 considered by Swadlow et al. [2002], the contamination was very small.

o The earlier attempts to model LFP kernels have required a large number of single-cell simula-
e tions [Hagen et al., 2016, 2017; Telehczuk et al., 2020b] to represent the postsynaptic population.
o However, a very efficient yet highly biophysically detailed framework for calculating population ker-
ot nels was recently proposed by Hagen et al. [2022]. In this framework, a single biophysically detailed
e cell simulation was sufficient to accurately predict a population kernel by first obtaining the mem-
s brane currents of the single postsynaptic neuron in response to conductance-based synaptic input,
e« and letting this represent the population-averaged membrane currents following synaptic activa-
ss tion. All other effects, including the spatial extent of the population and the variability of synaptic
e parameters, were then accounted for by a series of linear convolutions in the spatial and temporal
o7 domains. This approach greatly increases the applicability of the kernel approach, since LFP/EEG
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e kernels can be calculated accurately and efficiently, even by common laptop computers. The LFP
9 calculated from the kernel approach by Hagen et al. [2022] was tested against the “ground truth”
w0 LFP calculated from a multicompartment, biophysically detailed neural network simulation, and the
w1 kernel approach was found to be quite accurate in most scenarios.

102 As reviewed above, several recent projects have used the kernel approach to estimate LFP,
s EEG, or MEG signals directly from firing rates [Hagen et al., 2016; Telefnczuk et al., 2020a,b; Skaar
w4 et al.,, 2020; Hagen et al., 2022; Tesler et al., 2022], and it has proved a promising tool for future
s studies of neural activity at the population level. Therefore, it is important to have a good qualitative
w6 understanding of how the kernel approach works, and good quantitative measures of how accurate
w7 it is under different circumstances.

108 In this study, we start by building a better understanding of how and when the kernel method
19 can be expected to work, and when caution is advised. We then develop a theoretical framework
1o for predicting the accuracy of the kernel approach and show that the relative error is a function of
11 the single-cell kernel heterogeneity and spike-train correlations. Finally, we demonstrate that the
12 kernel approach is most accurate for the LFP contributions that can be expected to dominate the
13 LFP signal, like highly concentrated and correlated synaptic input to large populations of pyramidal
114 neurons.

s 2. Results

16 Many measurable brain signals, like LFPs, ECoGs, EEGs, and MEGs are expected to share the
17 same biophysical origin, namely the membrane currents following large numbers of synaptic inputs
1 to populations of geometrically aligned pyramidal neurons [Ness et al., 2022; Halnes et al., 2024].
19 10 accurately calculate these signals from simulated neural activity, we therefore need to take into
120 account all synaptic events.

121 Since volume conduction is linear [Miceli et al., 2017], the compound extracellular potential
Nposi
V(r,t) = Vi(r,t) (1)
i=1

122 generated by a population of Nyt neurons is a linear superposition of the individual cell contri-
12s  butions V; (i = 1,..., Nyst). Therefore, calculating the extracellular potential of a population of
122 Npost Neurons is typically done by focusing on the synaptic input to each cell, calculating single-
125 cell contributions (see Methods), and finally summing all cells (Figure 2A), here referred to as the
126 pOSISynaptic perspective.
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A postsynaptic B presynaptic
perspective perspective

Figure 2: lllustration of the principle underlying the kernel method. A: The postsynaptic perspective,
where all incoming synaptic input to a postsynaptic cell is taken into account, and the time-dependent LFP
contribution of the postsynaptic cell is calculated. The total population LFP V' (7, t) is then the sum of all such
single-cell contributions V;(r,t). This is the standard way of calculating LFP signals from neural simulations.
B: The presynaptic perspective, where all outgoing synapses from a single cell are considered. For passive
cells with static (no plasticity), current-based synapses, every action potential of a presynaptic neuron j will
evoke the same postsynaptic currents, and hence, each action potential has a fixed LFP response h;; (7, t).
By taking into account all postsynaptic targets, the single-cell kernel k; (r, ) can be calculated, and the single-
cell LFP contribution can be found by convolving the single-cell kernel with the corresponding spike train of the
presynaptic cell. The population LFP is again the sum of all single-cell contributions, and if this is done for all
cells, and all external incoming synapses, the LFP calculated by these two approaches will be identical, under
the assumptions listed above.

w27 2.1. Single-cell spike-LFP kernels

128 In principle, we can also switch the perspective to each presynaptic cell: Each action potential
120 from a given cell leads to an activation of the outgoing synapses, causing a distributed “extracellular
130 potential flash” from all postsynaptic target cells (Figure 2B), referred to as the single-cell spike-LFP
131 kernel. For simplicity, we will here refer to this as the single-cell kernel. If we convolve the single-cell
132 kernel with the spike train of the presynaptic neuron, we get the extracellular potential including all
13 postsynaptic effects from this neuron. If we know all single-cell kernels and corresponding spike
1« trains, we can then calculate the extracellular potential as the sum of all single-cell postsynaptic
135 contributions. If this is also done for external input, we have accounted for all synaptic events.

136 The above argument is based on the fact that the single-cell kernel is similar each time a neu-
17 ron spikes. This holds if we ignore synaptic plasticity and assume that extracellular potential con-
138 tributions caused by individual synaptic activations superimpose linearly for each cell. However,
139 in principle, the membrane currents of a cell depend on the joint effect of all its spiking inputs, for
140 example, active dendritic channels or voltage-dependent synaptic currents cause nonlinear interfer-
11 ence of inputs. However, previous work has shown that LFPs can be well predicted with quasi-linear
142 approximations of ion channels [Ness et al., 2016, 2018], and that kernel-based approaches can
13 give accurate LFP predictions also for conductance-based synapses [Hagen et al., 2022]. In this
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14 case, the above assumption holds and we obtain

Npre

Vilr 1) = 3 (his(r) = 5,) (0), @)

j=1

s where h;;(r,t) is the LFP response of postsynaptic neuron i to an individual spike of presynaptic
us neuron j, and s; is the spike train of presynaptic neuron j. Here x denotes a temporal convolution.
w7 If we combine equation (1) and equation (2) and rearrange summands, then we get what we refer
s to as the presynaptic perspective (Figure 2B),

Npre
V(r,t) =Y (ki(r)*s;) (1), (3)
j=1
19 with the single-cell kernel
Npost
kj(r t) =Y hij(r,t). (4)
=1

150 This prediction of the population LFP from single-cell kernels is in the following denoted as the
151 “ground truth” against which we test approximations.

12 2.2. Population rate-LFP kernels

153 Neurons in neural circuits often share statistical properties in terms of morphology, electro-
1.« physiology, connections, and spiking activity. Based on such similarities they can be grouped into
155 neuronal populations. In the classical view, a population is a group of neurons with similar input
156 statistics as well as similar internal properties and dynamics, such that they have similar spiking
157 statistics. For the generation of LFP contributions, however, not only the spiking statistics should
15 be similar for cells within a population, but also their translation into LFPs as measured by the
159 single-cell kernels.

160 If all single-cell kernels &; of a population of neurons were identical, then they would in particular
11 be identical to the population-averaged kernel

N,
_ 1 pre
= — > kylrt
k(r’t) Npre = J(r7 ) ) (5)

ez such that the compound LFP V' (r,t) = (k(r) = R) (¢) of the population could be perfectly predicted
s by the population rate R(t) = Z;V:"’i s;(t) without the need to consider the detailed information of
e« individual neuronal spike trains. The population-averaged kernel k(r,t) can therefore be inter-
s preted as a population rate-LFP kernel. For simplicity, we will here refer to this as the population
166 kernel.

167 In general, however, the properties and projections of neurons are only statistically similar rather
s than identical, such that the single-cell kernels differ from k(r, t). As a consequence

V(r,t) = (k(r)* R) (t) (6)

o IS only an approximation of the true compound LFP V (r,t). In the following, we study the error of
o this approximation and how it depends on the neuronal and the network properties.

171 Single-cell kernels depend on a multitude of neuron and network features including network
1722 connectivity, neuronal morphology, synapse positions, electrode position and electrical properties


https://doi.org/10.1101/2024.07.10.602833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.10.602833; this version posted July 13, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

available under aCC-BY 4.0 International license.

of cells, leading to potentially complicated spatio-temporal profiles. Yet they are by definition causal
and their time course is determined by synaptic dynamics and dendritic filtering properties [Lindén
et al., 2010]. As with LFP responses to individual synaptic inputs, the amplitude and polarity of
single-cell kernels is expected to strongly depend on the relative position of cells with respect to the
recording electrodes.

Before calculating the precise shape of single-cell kernels from biophysically detailed models,
we first show some key aspects of the population kernel approximation using a simple illustrative
model, where single-cell kernels are defined as double-exponential functions with different ampli-
tudes (see Methods, Figure 3A).
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Figure 3: lllustration of kernel method with toy model. A: Two toy single-cell kernels (blue and orange),
and the mean, that is, the population kernel (black). B: Raster plot of the two corresponding spike trains, with
the same color code as in panel A. Each colored marker corresponds to a spike, and the individual spike trains
are plotted at different heights along the y-axis. C: The population rate (average number of spikes per time
bin, At = 0.1 ms), that is, the mean firing rate from the spike trains in panel B. D: The gray line shows the
ground truth toy LFP signal calculated as the sum of each single-cell contribution, which is again calculated by
convolving the single-cell kernels with the corresponding spike trains. The black line shows the LFP calculated
by convolving the population kernel with the population rate. The red line shows the difference between the
ground truth LFP and the population kernel LFP.

Each single-cell kernel (Figure 3A) is convolved with a different spike train (Figure 3B) and the
resulting extracellular potential (Figure 3D) is compared to the prediction of the population kernel
(black line in Figure 3A) that is convolved with the population rate (Figure 3C). The population
kernel prediction generally resembles the ground truth. It is, however, different in detail due to
the heterogeneity in single-cell spike kernels. The approximation improves at times where multiple
neurons spike synchronously (Figure 3D ¢t=50 ms). This hints at a more general aspect: if all spike
trains in equation (1) are identical, then the population kernel prediction becomes exact even though
the single-cell kernels are different. In conclusion, this simple toy model illustrates the two main


https://doi.org/10.1101/2024.07.10.602833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.10.602833; this version posted July 13, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10 features that determine the quality of the population kernel prediction: spike-kernel heterogeneity
191 and spike-train correlations. Predictions become poor when spike-train correlations are low and
192 spike-kernel heterogeneity is large, whereas large spike-train correlations and low spike-kernel
193 heterogeneity lead to low errors (Figure 4).
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Figure 4: Error in population kernel predictions depend on kernel heterogeneity and spike-train corre-
lations. Each column shows 1000 single-cell kernels with different amplitude standard deviations Agp (top),
and different levels of spike-train correlations (middle). Spike trains with varying levels of correlations were
generated through Multiple Interaction Processes (MIP) [Kuhn et al., 2003], controlled by the parameter f,
where f = 0 corresponds to uncorrelated homogeneous Poisson processes, while f = 1 corresponds to fully
correlated (identical) spike trains (see Methods). The mean firing rate is shown in black, and the standard
deviation in gray. The toy LFP is calculated (bottom). Relative error Eye, quantified by the normalized standard
deviation of the difference between the ground truth signal and the population kernel signal (see Methods),
vanishes for identical kernels, regardless of correlation (first column). For variable kernels with some corre-
lation, the kernel approach will result in some relative error (second column). For variable kernels and zero
correlation, the relative error will be large (third column). For perfect correlation, the relative error vanishes
regardless of kernel variability (fourth column).

This behavior of the prediction error can be derived analytically by employing a statistical de-
scription of the setup. As mentioned above, a population of neurons is defined via statistical sim-
ilarities between neuronal spike trains and spike kernels. In the following, we assume that both
quantities, appearing as a product (convolution) in equation (3), are drawn from distributions with
known means and covariances. A natural first choice for the definition of the prediction error would

be the mean deviation Mean {f/(r,t) —V(r, t)} of the population kernel prediction V (r, t) from the
ground truth V(r, t), where Mean [-] denotes the average across time. We could then ask what this
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201 quantity is on expectation across different realizations of kernels. In fact, it is zero, because each in-
202 dividual single-cell kernel on expectation coincides with the expectation of the population-averaged
20s  kernel. This measure is therefore not informative about the prediction error of the population kernel
20« Method for a single realization of single-cell kernels. The error is better assessed by the standard
205 deviation discrepancy of the population kernel prediction from the ground truth. The squared er-

206 ror then is E2(r) = Var [V(r,t) - f/(nt)}, where Var [-] denotes the variance across time. The
207 expectation of this quantity can be computed analytically (see Methods)

(B*(r)), = (Nore — 1)/dT (Ak(r,7) = Ci(r, 7)) (As(1) = Cs(7)) (7)

2s  With (-), denoting the expectation across realizations of the kernels. We further introduced the
20 population averaged spike-train autocovariances A;(7), the population averaged spike-train cross-
20 covariances Cq(7), and the autocorrelation and cross-correlation of single-cell kernels Ay (r,7) =
an [dr' {ki(r, 7 )ki(r, T 4+ 7))y Cr(r,7) = [dr’ (ki(r,7')kj(r, 7" + 7)),. The expression for E?
22 shows that, as expected, the error vanishes if the population of neurons spikes in a fully correlated
2s - manner (Cy = Ay) or if all neurons have the same spike-LFP kernels (A, = C}). For low average
214 Cross-covariances C = 0 as observed in cortex, the error is primarily determined by the size of the
215 presynaptic population Ny, i.e., the number of single-cell kernels, the correlations in spike-LFP
26 kernels, and the spike-train autocovariances. To assess the overall performance of the population-
27 based prediction, it is useful to also consider the relative error Ei, defined as the expected error E
28 normalized by the standard deviation of the ground-truth signal (see Methods). For our toy model,
219 the analytical predictions for the absolute and the relative error perfectly match the results of nu-
220 merical simulations (Figure 5). Theory and simulation confirm the anticipated trend that the error
21 grows with increasing kernel heterogeneity and decreasing spike-train correlations (Figure 5B,D).
22 The effect of spike-train correlations is, however, much more pronounced in the relative error (Fig-
23 ure 5C,E), as can be explained by the theory (see Appendix B). Note that the relative error is low in
24 regions where the signal amplitude is large (Figure 5A).
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Figure 5: Parameter scan for simple toy-model LFP. A: The LFP amplitude (quantified by its standard
deviation across time) for different levels of amplitude variability in single-cell kernels, and different levels
of correlations between spike trains. B: Observed absolute error, quantified by the standard deviation of
the difference between the ground truth signal and the population kernel signal. C: Observed relative error,
quantified by the standard deviation of the difference between the ground truth signal and the population kernel
signal (panel B), normalized by the ground truth signal amplitude (panel A). D, E: Same as in panels B and
C, but predicted from theory (equation (7)). Correlated spike trains were generated using MIP processes (see
Methods).

s 2.3. Sources and effect of kernel heterogeneities

226 As we have seen, the error depends on single-cell kernel heterogeneities. After having derived
227 the general dependence of the population kernel prediction on the statistics of single-cell kernels
28 and spike-train correlations, we next investigate more systematically where heterogeneity in single-
29 cell kernels stems from. To this end, we need to go beyond the toy model of the previous section and
20 employ a mechanistic model of extracellular potential generation based on the spatial distribution
21 Of cells, connectivity specifications and biophysically detailed cell models.

P We consider LFP and EEG signals from cortical populations. The major contribution to these
23 signals stems from synaptic inputs onto pyramidal neurons [Hagen et al., 2016; Halnes et al., 2024].
2 In the following, we therefore investigate the LFP and EEG kernels of a population of layer 5 pyra-
25 midal neurons, positioned around a linear multi-contact electrode that records the LFP at different
26 depths, while the EEG is recorded outside the scalp (Figure 6A). Synaptic inputs from a single
257 presynaptic neuron are modeled as spikes delivered to a random subset of neurons in the con-
258 Sidered postsynaptic population. To account for the natural heterogeneity in cortical connectivity,
239 parameters such as synapse locations, synaptic strengths, time constants, and delays are ran-
20 domly drawn from predefined distributions. The calculations of postsynaptic membrane currents
201 and resulting extracellular potentials are based on a morphologically reconstructed pyramidal neu-
22 ron from Hay et al. [2011]. A single-cell kernel represents the post-synaptic LFP (EEG) response
23 1o the firing of a single presynaptic neuron. The population kernel corresponds to the average of
24 the single-cell kernels obtained for different presynaptic neurons, each targeting different subsets
25 Of neurons in the postsynaptic population. Each population kernel represents one specific synap-
26 tic pathway from a given presynaptic population to a given postsynaptic population. Details of the
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27 setup outlined here are described in Figure 6 and Methods. In the following, we assess the sources
s Of kernel heterogeneities by systematically varying the different features of this setup.
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Figure 6: Effect of neuron and synapse heterogeneity on the variability of single-cell LFP kernels. A:
A population of cortical pyramidal neurons (morphologies depicted in shades of light gray and soma locations
as black dots) receives synaptic input from a presynaptic population. Each incoming axon forms, in total, Kout
connections with different postsynaptic neurons. The strength J of each synapse is randomly drawn from a
lognormal distribution. The synaptic time constant 7sy» and the synaptic delay are drawn from normal distri-
butions (graphs to the left). The vertical position of each synapse is drawn from a normal distribution (green
curve to the right). Some exemplary synapse positions are plotted on the postsynaptic population as green
dots. Vertical soma positions are drawn from a capped normal distribution (black curve to the right). Horizontal
soma positions are uniformly distributed on a disc within radius Rpop. The LFP response to an activation of
all Kout synapses of a single incoming axon is calculated for different cortical depths (dark red dots). The
EEG response outside the head, directly above the population, is calculated using a simple spherical head
model. For each parameter configuration, we generate 100 single-cell kernels resulting from different random
realizations of neuron and synapse parameters. Each of these kernels describes the postsynaptic LFP (EEG)
response to the firing of a different presynaptic neuron. B-D: LFP and EEG responses for different synaptic
target zones (B: apical; C: basal; D: uniform). Gray: single-cell kernels. Black: population kernel. The “basal
input” case is used as the “default case” throughout this study. E: Mean (solid curves) and standard deviation
(bands) of the maximum LFP deflection at different cortical depths for different synaptic target zones (see
legend). See Methods for details on the model and parameter values.

249 It is well known that the LFP/EEG response of individual cells to synaptic input strongly depends
20 on the location of the synapses [Lindén et al., 2010; Lindén et al., 2011; Naess et al., 2021; Ness
21 et al, 2022]. Since the single-cell kernel is the superposition of such signals from all target cells
22 Of a given spike, we expect that this dependence translates into a strong influence of synaptic
2 locations on the shape of the single-cell kernels. Indeed, we find that the single-cell LFP/EEG
24 kernels looked very different when stimulating cells in the population only apically, only basally, or
25 uniformly (Figure 6B-E).

256 We notice substantial variability in single-cell spike kernels (light gray), however, for the cases
257 Of apical or basal input we observe that different single-cell kernels seem to have a similar overall
28 Shape, and therefore a pronounced population kernel. In the case of the uniform input, there is more
20 diversity in single-cell LFP kernels, such that the population kernel has very low signal amplitude
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20 at all depths. The reason is that individual apical or basal inputs lead to rather stereotypic (but
21 opposite) LFP/EEG responses, irrespective of the exact location of the synapse on the dendrite.
22 In contrast, when considering all possible input locations (uniform) the diversity in the LFP/EEG
23 responses to individual synaptic inputs is larger, leading to substantial cancellation. Furthermore,
2« We notice that the variability seems to be higher close to the input region and decreases with
25 distance from the input region. As a result, there is generally less kernel heterogeneity in the EEG
26 kernels than in the LFP kernels (Figure 6B-D).

267 By choosing a set of kernels, first from the basal input which we will treat as the “default case’
%8  (Figure 6C), and combining them with spike trains (see Methods), we can then calculate the LFP
20 Signal by convolving each individual kernel (Figure 7A, gray curves) with its corresponding spike
270 train (Figure 7B, individual spike trains in gray) and summing the results for all single-cell contri-
21 butions (Figure 7C, gray curves). This is what we treat as ground truth in the following analysis.
222 Further, we convolve the population kernel (Figure 7A, black curves) with the population rate (Fig-
273 ure 7B, black line) to obtain the population kernel LFP (Figure 7C, black curves). For brevity, we
27 first focus on the LFP signal, but the general results also apply to EEG signals, which we will get
275 back to later.

276 To evaluate the accuracy of the population kernel approach in approximating the ground truth
277 case, we compare the LFP signals (Figure 7C black versus gray curves). We calculate the observed
278 relative error (see Methods), and compare to the relative error predicted from theory, and find them
279 1o be almost indistinguishable, demonstrating that the theory is well suited to predict the error
20 (Figure 7D).

281 We can now evaluate the error of the kernel approach for different parameters of the kernels.
22 10 evaluate the relative importance of different factors, we compare different parameter configura-
258 tions to the “default case” shown in Figure 6C and Figure 7. We start with uncorrelated Poisson
24 spike trains. In the following analysis, we will only show LFP amplitudes and errors but kernels
25 from all tested parameter combinations (see Methods, Table 1) and resulting LFPs are shown in
2 Figure C.13.

i
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Figure 7: Example of LFP kernels, spike trains, and the resulting LFP signals. A: The LFP kernels at
different depths (see Figure 6A) with each single-cell kernel in gray and the population kernel in black. The
kernels shown here are from the “default” case, corresponding to Figure 6C. B: Raster plot of uncorrelated
spike trains (see Methods) with a firing rate of 10s™*. Below the spikes, the population firing rate (constructed
by summing all individual spike trains) is shown in black. C: The ground truth LFP signal (gray), the population
kernel LFP signal (black), and the difference between them (red), at different depths. D: The relative error at
different depths (see Methods), either observed from simulations (solid curve) or predicted from theory (dotted
curve).

287 For basal or apical synaptic input (Figure 8A1, black or brown curves), the ground truth and the
258 population kernel LFP give indistinguishable predictions for the signal amplitude at different depths
20 (the signal amplitude is here represented by the signal standard deviation). This is not the case
200 for the uniformly distributed synaptic input (Figure 8A1, purple curves), which has a much lower
201 amplitude, and a pronounced difference between the ground truth and the population kernel LFP.
202 This is reflected in the error (Figure 8A2) and the relative error (Figure 8A3), where we observe
20a very high relative errors at all depths for the uniform input, and substantially lower error for apical
204 O basal input. Furthermore, for the latter two cases, the error decreases with distance from the
205 input site. This is in agreement with our earlier observations regarding the kernels (Figure 6B-
26 E). Notice also that the observed error (Figure 8A2-A3, solid curves) and the error predicted from
207 theory (Figure 8A2-A3, dotted curves) closely overlap, illustrating again that the theory is perfectly
26 able to predict the error.

299 Intuitively we would expect the number of postsynaptic targets per neuron, Koy, to strongly
a0 affect the signal amplitude and the error, since more postsynaptic targets can be expected to in-
a1 crease the amplitude and decrease the variability of the kernels. The reason for this low variability
w2 is that each single-cell kernel corresponds to a sum of many extracellular potential responses h;;.
ws These are all “activated” simultaneously by the incoming spike such that differences in h;; to some
s« degree average out. As a consequence, we would expect the population kernel prediction to be-
as come significantly worse if neuronal outdegrees are small. This is indeed the case if we reduce
as the outdegree Ko towards lower values (Figure 8B1-B3). A theoretical analysis confirms that the
a7 relative error decreases as 1/+/ Koyt (see Methods).

308 The synaptic parameters we consider are the synaptic weight, the synaptic time constant, and
s the synaptic delay. The synaptic weights are lognormally distributed in analogy to Hagen et al.
s [2016, 2022], while the synaptic time constants and delays are normally distributed. As predicted by
s the theory (see Methods), decreasing or increasing the standard deviations of these distributions by
sz a factor of two has a negligible effect on signal amplitudes (Figure 8C1), while the error increases
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sis  With increasing variability (Figure 8C2-C3). We confirmed that the effect on the error is almost
siu entirely determined by the weight distribution, while the time constants and delays have a negligible
ais  effect (results not shown).

ate The spatial spread of the synaptic input is seen to have an important effect on both the signal
a7 amplitudes (Figure 8D1) and the errors (Figure 8D2-D3), where a broader region of input gives
asis @ much weaker signal and much larger relative errors, similarly to what we saw for the uniformly
ao  distributed synaptic input (which can be seen as an extreme case of a broad input region, Fig-
a0 ure 6D,E).

a1 When the postsynaptic cells are spatially concentrated, we find a larger LFP amplitude in the
a2 center of the population as expected (Figure 8E1). The relative error is however only weakly af-
a2 fected (Figure 8E3).
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Figure 8: Comparison of how different parameter configurations affect LFP amplitude and population
kernel errors. For uncorrelated Poisson input with a rate of 10s~! (see Methods), the figure shows the
standard deviation of the LFP at different depths (column 1), and the absolute (column 2) and relative error
(column 3) from using the population kernel, for different modifications of the original parameter set (“default”).
Each row corresponds to varying a certain feature. A: Synaptic input region. B: Number of postsynaptic
targets Kout (outdegree). C: Variability of synaptic parameters. D: Spread of the synaptic input in the depth
direction. E: Radius of the population.
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s 2.4. Sources and effect of spike correlations

a5 To evaluate the error of the kernel approach, we also need to consider the effect of different
ws types of spiking statistics, with different levels of correlation. To this end, we employ the same
a7 setup described in the previous subsection but replace the uncorrelated Poissonian input spikes
a8 With spike trains generated by two different methods. In a first approach, we create spike trains as
ae realizations of a Multiple Interaction Process (MIP; Kuhn et al. [2003]) with firing rate v, fraction f
s of shared spikes, and pairwise correlation coefficient ¢ = f2. With this model, the firing rate and
a1 the level of correlation can easily be controlled, but the auto- and cross-correlations of the resulting
s Spike trains are delta-shaped and thus rather artificial. As an alternative approach, we employ
s @ recurrent point-neuron network model of excitatory and inhibitory neurons (“Brunel network”;
s [Brunel, 2000]) that can operate in different dynamical regimes and thereby produce spike trains
a5 With a more natural correlation structure. Here, we use the same parameters and corresponding
s hetwork states described in Brunel [2000], and extract spikes from the asynchronous irregular (Al;
s Figure 9C), and the slow synchronous irregular regime (Sl slow; Figure 9D).

MIP MIP
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Figure 9: Generating different types of correlated spiking. A,B: Spiking activity generated by Multiple In-
teraction Processes (MIP; Kuhn et al. [2003]) with firing rate v = 10s~* and correlation coefficients ¢ = f2 = 0
(A) and 0.01 (B). C,D: Spiking activity generated by a recurrent network of point neurons [Brunel, 2000] op-
erating in the asynchronous irregular (“Al”; C) and in the slow synchronous irregular regime (“Sl slow”; D).
Top panels: Raster plots for 100 exemplary neurons. Bottom panels: Normalized spike-train auto- (black) and
cross-covariance (gray) functions. The depicted curves represent population averaged correlations obtained
from binned spike trains of an ensemble of 100 neurons, with an observation time of 6.1s, and a binsize of
2~*ms. See Methods for details on the spike-generation models and parameter values.

a8 In the parameter configurations discussed above, we used uncorrelated spike trains. However,
as  as earlier discussed, the spike-train correlation will also affect the error (equation (7)). We therefore
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a0 combine the kernels from the default case used above, with spike trains exhibiting different levels
a1 Of correlation, including those illustrated in Figure 9. The amplitude of the LFP is highly dependent
2 on the spike trains, and for the MIP spike trains the amplitude increases with both firing rate and
as  correlation (Figure 10A).

344 The absolute errors from the MIP spike trains appear roughly independent of the correlation,
xus  but dependent on the firing rate (Figure 10B), while the relative errors are instead independent of
us the firing rate but dependent on the correlation. This is confirmed by theory (see Appendix B) and
a7 in line with earlier observations in Figure 5B, where we saw in a toy model that the absolute error is
xs  only dependent on the correlation for very high levels of correlations (f > 0.1). The lowest relative
ae  error is from the Brunel Sl slow state. This is as expected, because of the highly correlated spiking

350 activity.
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Figure 10: The effect of spiking dynamics in population kernel errors. A: For the default kernels (Fig-
ure 6C), the amplitude of the LFP signal at different depths is shown for different types of spiking activity, both
for the ground truth case (solid lines), and the population-kernel case (dashed lines). B: The absolute error
across depths, observed in simulations (solid lines) and predicted from theory (dotted lines). C: The relative
error across depths, observed in simulations (solid lines) and predicted from theory (dotted lines).

st 2.5. Combined effect of kernel heterogeneity and spike-train correlations

352 We summarize the results in Figure 11A-B, which combines different kernel parameters with
sss  different types of spiking activity. If we start by focusing on the kernel parameters (rows), we see
s that in all cases, uniform synaptic input gives low signal amplitudes and large relative errors. The
s next highest relative errors are for the case with the broader synaptic input region, which together
sss  with the uniform input case demonstrates the importance of the spatial spread of the synaptic
ss7  input. The lowest relative errors are for the large postsynaptic population (large Kot), followed by
sss  the narrow input region. If we instead focus on the different types of spiking activity (columns), we
we see that the lowest relative error is for Brunel Sl slow, while the highest relative error is from the
a0 uncorrelated MIP processes.

361 A convenient rule-of-thumb emerges from the results discussed above: The relative error asso-
sz Ciated with applying the population kernel method is in general inversely proportional to the signal
ws amplitude (Figure 11C). This is an important insight because it means that we can expect the pop-
a4 Ulation kernel approach to work best for the synaptic pathways that are dominating the LFP signal,
s and worst for the synaptic pathways that have a weak LFP contribution. Note that this relationship
ss  also holds for the EEG signal, where the error is also substantially lower (Figure 11C, gray dots). As
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s7  an illustrative example, it has been argued that the LFP and EEG signal is mainly driven by periso-
s matic inhibitory input to pyramidal cells [Hagen et al., 2016; Telenczuk et al., 2017; Telenczuk et al.,
s 2020a,b; Hagen et al., 2022], while excitatory input to pyramidal cells is less important, as it is more
s uniformly distributed across the postsynaptic pyramidal cells, and therefore gives a relatively weak
a1 contribution to the LFP/EEG signal. In this case, we would also expect a large relative error for the
sz excitatory-to-excitatory pathway, but since this synaptic pathway is in this case only associated with
ss @ minor LFP/EEG contribution, the high relative error might be acceptable.
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Figure 11: Summary of errors for different kernel parameters and different types of spiking activity. A:
Maximum ground truth LFP amplitude across depths for different combinations of kernel parameters (rows)
and spiking activity (columns). B: Maximum observed relative errors across depths, for different combinations
of kernel parameters (rows) and spiking activity (columns). The rows and columns are sorted so the largest
relative errors are in the bottom left, while the lowest relative errors are in the top right. C: The relative error
as a function of the signal amplitude for the LFP signal (black dots), and for the EEG signal (gray dots) for all
parameter combinations shown in panels A and B. Since the EEG signal intrinsically has a much lower signal
amplitude, the LFP and EEG signals are normalized by the maximum observed signal amplitude seen in either
of the two signals, so they are easier to visually compare. The dashed line is a visual guideline corresponding
to a perfect inverse correlation.

s 3. Discussion

as  3.1. Summary

a76 In this study, we have attempted to illustrate what the kernel approach is (Figure 2, Figure 3),
a7 and built an intuition for when we can expect it to be applicable (Figure 4, Figure 5). We further
s developed a mathematical framework to analyze the expected error of the kernel approach and
s Showed that it was capable of accurately predicting the observed errors (Figure 5). From equa-
s tion (7) we saw that the error was dependent on both the single-cell kernel heterogeneity and the
a1 level of correlation between spike trains.
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382 Since LFP, EEG, and MEG signals are, at least in the cortex and in the hippocampus, expected
s 1o primarily originate from synaptic input to populations of pyramidal cells, we built a biophysically
s detailed model population receiving different types of synaptic input, where the individual param-
as eters could be easily adjusted (Figure 6). We then combined these kernels with different types
as  Of spiking activity with varying levels of firing rates and correlations (Figure 9). This allowed us
a7 to assess how the error introduced by the population kernel approach was affected by different
s parameter choices for the kernels (Figure 8) and spiking activity (Figure 10).

389 The results show that the relative error of using the kernel approach will be lowest for the strong
a0 Signal contributions (e.g., spatially clustered synaptic input and high levels of correlations), and
a1 highest for the weak signal contributions (e.g., uniformly distributed synaptic input and low levels of
sz correlations; Figure 11). This implies that those scenarios where the population kernel prediction
ss  breaks down are less relevant when considering the total LFP/EEG signal: For cortical scenarios,
s the LFP/EEG is dominated by apical and basal inputs for which the population kernel prediction
as only yields a small relative error. Note also that the same holds for LFP signals created by other
aws morphological types of neurons: stellate cells and interneurons lack the asymmetry introduced by
a7 the apical dendrites in pyramidal cells. Unless asymmetry is introduced by synapse positions, their
ss LFP contribution can therefore be assumed to resemble the uniform input scenario shown above.
ass  The population kernel prediction would break down for populations with symmetric morphologies
w0 and synapse distributions. However, their overall contribution to the measured LFP can be expected
w01 to be negligible in the presence of pyramidal-neuron LFP contributions.

402 In summary, these results demonstrate that the kernel approach is a promising method for
w3 calculating LFP, EEG, or MEG signals directly from firing rates.

w0 3.2. Application to firing rate models
405 The kernels considered in this paper correspond to the kernels from a single synaptic pathway.
«s Given some prior knowledge or reasonable estimation of synaptic parameters, and how synapses
«7 are distributed on postsynaptic neurons, approximate kernels can be derived and used also for
w08 firing rate models.
To illustrate its applicability, we here choose a simple population rate model of the form [Montbrié
et al., 2015; Schmidt et al., 2018],

% = A/ + 270N, (8)
0 = v? + Jrr+n+ 1(t) — 222, 9)

w0  Where r and v are the firing rate and membrane potential, respectively, and 7 is the membrane
a0 time constant. The model is particularly interesting in the context of multi-scale modeling as it
411 has been shown to be an exact macroscopic description of the average dynamics of a population
a2 of all-to-all coupled excitatory quadratic integrate-and-fire (QIF) neurons [Montbrié et al., 2015].
a3 The other parameters J, n and A are derived from the microscopic definition of the QIF network
s and describe the synaptic weight, and the center and half-width of a Lorentzian distribution of
45 heterogeneous, quenched external inputs, respectively. This population rate model and its dynamic
w6 repertoire have been analyzed extensively over the past years with multiple extensions. These
«7 include the incorporation of multiple populations to model working memory [Schmidt et al., 2018],
as inhibitory coupling to produce theta-nested gamma oscillations [Segneri et al., 2020], and sparse
ss coupling and external fluctuations [Goldobin et al., 2021; Di Volo et al., 2022]. The basic model in
w20 equation (8) has been shown to produce a non-trivial transient oscillatory behavior upon stimulus-
« induced (I(t)) switching between two steady-state attractors (Figure 12A). Using the population
w22 kernel prediction such behavior can be modeled in terms of LFP and EEG (Figure 12C), providing
w23 the basis for comparisons of population rate model dynamics with experimentally obtained LFPs
24 and EEGs.
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425 For firing-rate models with different populations we can combine different kernels for different
w2 Synaptic pathways. As an example, for an inhibitory-to-excitatory pathway, we could choose a sign-
«27 inversed (to change from excitatory to inhibitory input currents) version of the “default” case kernel,
«2s 1o represent perisomatic inhibitory input. Likewise, for an excitatory-to-excitatory pathway, we could
w29 use the kernel from uniform synaptic input. All kernels constructed in this study are available online
w0 (see Methods), and can in principle easily be modified to accommodate different scenarios.

A firing rate B kernels C signals
LFP o LFP®
kernel e— —
o o
o— o
100 o— —
um | e——
P e — |4 I7
10 s} ~——— uv ® mV
-_ ~—
N — pa—
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Figure 12: lllustration of the kernel approach applied to a rate model. A: Stimulus induced switching
dynamics of rate model described by equation (8), with A = 2, n = —10, J = 15v/A, and 7 = 100ms
[Schmidt et al., 2018]. The stimulus I(t) is a square pulse with an amplitude of 4, a delay of 1s, and a
duration of 3's, resulting in switching dynamics similar to what was observed by Montbri6 et al. [2015, Fig.
2(a)] B: Population kernel for the “default” case (basal input) of the setup introduced in Section “Sources and
effect of kernel heterogeneities” (see Figure 6C). C: Transient behavior as observed in the population kernel
LFP and EEG signals, calculated by convolving the population rate in panel A with the kernels in panel B.
Before the convolution with the LFP/EEG kernel, the population rate is transformed from units of hertz to
units of spikes/At, and scaled by the considered size of the presynaptic population which was in this case
10,000 [Montbrié et al., 2015].

w1 3.3. Limitations

a2 An important caveat of the present study is that we considered a fully linear scenario, with
«s  passive postsynaptic neurons and current-based synapses. This allowed us to treat the case,
w4« Where each single-cell kernel was coupled to its corresponding spike train, as “ground truth”. We
w5 could then quantify the error of approximating the LFP/EEG directly from the population kernel and
ws  population firing rate. In assuming linearity, we are however ignoring several potentially important
w7 factors that may contribute to LFP and EEG signals.

438 Firstly, we ignored the extracellular action potentials (EAPs) that in principle precede each
we  single-cell kernel. Note that we could in principle easily have included these EAPs in the single-
a0 cell kernels by choosing a location for each presynaptic neuron, and calculating the EAP on the
w1 recording electrodes from an action potential in the presynaptic neuron. EAPs can have amplitudes
w2 of several hundred microvolts if the soma is very close to a recording electrode, but the amplitude
«s  falls off rapidly with distance [Pettersen and Einevoll, 2008; Hagen et al., 2015; Halnes et al., 2024],
w4 and we would therefore expect a very high single-cell kernel heterogeneity in these EAP contri-
«s  butions. We therefore do not expect that the population kernel would give accurate predictions of
us  EAP-contributions to LFP/EEG signals. However, at least for large cortical populations, we do not
w7 expect EAPs to be a major contributor to LFP and EEG signals [Pettersen et al., 2008; Hagen et al.,
ws  2022; Ness et al., 2022], but the reader should keep in mind that any putative EAP contribution is
ws  neglected in this analysis.
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450 Secondly, in assuming passive postsynaptic neurons, we neglected effects from subthreshold
st active conductances. It has been demonstrated in modeling studies that subthreshold active con-
sz ductances can in certain cases be important in shaping the LFP [Ness et al., 2016, 2018], however,
s this effect can be taken into account also in linear models through linearization [Remme and Rinzel,
e 2011; Ness et al., 2016, 2018; Hagen et al., 2022]. The effect of other types of non-linearities, such
sss - as dendritic action potentials, on the validity of the kernel method LFP estimates should be as-
s sessed in future studies.

457 Thirdly, we relied on current-based instead of conductance-based synapses. Since conductance-
s based synapses depend on the membrane potential, and change the effective membrane conduc-
w9 tance of the postsynaptic neurons, the LFP response to synaptic input will for conductance-based
w0 Synapses depends on the ongoing synaptic input to the postsynaptic population. It was previously
w1 demonstrated by Hagen et al. [2022] that the kernel approach can make accurate LFP predictions
«2 also for conductance-based synaptic input, by taking into account the “background level” of synaptic
ws  input that each population was receiving. However, while using conductance-based synapses had
w4 an important effect on kernel amplitudes [Hagen et al., 2022], it is not expected to have a strong
«s effect on single-cell kernel heterogeneity. Therefore, the error analysis presented here is equally
w6 relevant to models using both current-based and conductance-based synapses for calculating ker-
w7 nels.

a8 Also, our analysis here focuses on cortical networks where the LFP/EEG is dominated by inputs
w9 Onto pyramidal neurons and other contributions are negligible. We show that the relative error of
an  the population kernel method is in general small for large current dipoles, but sizable for overall
«n small signals. It is therefore plausible that the kernel method will work less reliably in other brain
42 regions such as basal ganglia, where there are no pyramidal neurons.

as  3.4. Inference and approximation of population kernels

a7a Population kernels were here constructed from the average of all single-cell kernels for a pop-
a5 ulation of neurons. The latter kernels can be measured in experiments [Swadlow et al., 2002;
s Bereshpolova et al., 2019; Telenczuk et al., 2017; Telenczuk et al., 2020a] and simulations [Ha-
a7 genetal., 2017; Telenczuk et al., 2020b], for example using microstimulation of individual neurons.
a5 This is, however, experimentally not feasible for a large number of neurons and in simulations it is
a9 computationally expensive. Since variability in single-cell LFP kernels is low in some scenarios, we
0 can expect that an approximation of the population kernel based on single-cell kernels of a small
«1  Subpopulation is still valid, and indeed Hagen et al. [2022] demonstrated that population kernels
sz could be accurately estimated based on a single biophysically detailed cell simulation.

483 A direct way to obtain population kernels is via simultaneous stimulation of the whole population
s« Of neurons, for example using optogenetic techniques. Also, population kernels can be inferred
w5 Vvia deconvolution techniques [Mukamel et al., 2005] from given compound extracellular potentials
«s and population rates. This procedure, however, relies on the fact that those neurons from which
7 Spike trains are recorded are those with the dominant single-cell kernels. If other populations of
a8 neurons from which no spikes are recorded contribute significantly to the extracellular potential,
a9 then the inferred population kernel is invalid. In the case of spike recordings from multiple popula-
w0 tions, one can use the MIMO (multiple input - multiple output [Perreault et al., 1999]) scheme for
w01 deconvolutions of the individual population kernels.

w2 3.5. Definition of population

493 Typically a population is defined via common input statistics and physiological parameters be-
s tween neurons such that output spiking statistics are similar. Here, we need in addition that the
w5 single-cell spike kernels of neurons in a population are similar. This includes similar postsynaptic
w6 targets and projection patterns to them as well as passive properties of postsynaptic targets. So the
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4«7 definition of a population is not only based on incoming connection statistics but also on outgoing
w8 coNnection statistics. Also what defines a population might dynamically change: if correlations, i.e.,
w9 Spiking statistics, between two populations are large then merging them into one population even if
s they have different kernels would lead to a good population-kernel prediction.

so0  3.6. Conclusion

502 As reviewed in the Introduction, several different approaches to calculate LFP/EEG/MEG signals
ss  from point-neuron or firing rate models have been suggested [Deco et al., 2008; Sanz-Leon et al.,
soe  2015; Mazzoni et al., 2015; Telenczuk et al., 2020a; Glomb et al., 2022; Tesler et al., 2022], but
ss quantitative evaluations of the accuracy of these approaches have often been lacking. Here, we
ss have presented a thorough analysis of how the kernel method works, and when we can expect
s7 it to be a good approximation. Our results further establish the kernel approach as a promising
ss method for calculating brain signals from large-scale neural simulations, and we hope that the
ss  kernel approach can therefore be used with more confidence.

s 4. Methods

s 4.1. Forward modeling

512 The calculation of the extracellular potential was done using a well-established forward-modeling
sis  scheme based on electrostatics with current sources computed via solving the membrane potential
s1a dynamics of each cell given all its inputs [Halnes et al., 2024]. For the neural simulations we used
sis  LFPy [Hagen et al., 2018], running on top of NEURON [Carnevale and Hines, 2008].

sie  4.1.1. Calculating EEG signals

517 Current dipole kernels were calculated from the neural simulations using LFPy [Hagen et al.,
sie - 2018], and could in principle be used with arbitrarily simple or detailed head models. EEG signals
sio  were calculated with the four-sphere head model [Neess et al., 2017] implemented in LFPy.

s0 4.2. Toy model for spike-LFP kernel

521 The spike-LFP kernels from the toy model (Figure 3, Figure 4, Figure 5) were double exponential
s22  functions (rise time 7, = 0.2 ms, decay time 75 = 1 ms), which only varied in amplitude A;. The
s implementation was equivalent to the “Exp2Syn” mechanism in NEURON, and given by,

76715/7'1 +67t/7'2
ki(t) = A; v t>0. 10
Z( ) ’max(_e—t/‘rl +e—t/72) > ( )

s« The mean amplitude was always 1.0V, while the standard deviation of the amplitude was varied as
ss detailed in the individual figures. The time resolution of the simulations was 0.1ms.

s 4.3. Biophysically detailed simulations

527 We used the rat cortical layer 5 pyramidal cell model from Hay et al. [2011], where all active
ss  conductances were removed to make the cell passive [Ness et al., 2016, 2018]. We used current-
20 based synaptic input with exponential decay, and a time resolution of 2=*ms. For calculating single-
s cell spike-LFP kernels, we generated for each presynaptic neuron j, a population of Ky (default
s value: 500) postsynaptic instances of the pyramidal cell model. The cells were aligned with and
sz randomly rotated around the z-axis, and the z-positions of the somas were drawn from a capped
s normal distribution (mean: —1270um, SD: 100um). The cap was introduced to avoid neurons
s protruding out of the cortex. The somas were uniformly distributed in the xy-plane within a radius
sis Rpop (default value: 250um). Each postsynaptic neuron ¢ had a single synapse with weight J;;
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drawn from a lognormal distribution, calculated through scipy.stats.lognorm (mean: 0.1nA,
default s-value: 0.4nA, see scipy.stats.lognorm documentation). The spatial distribution of
the synapses in the depth direction was drawn from a normal distribution (default syn z mean:
—1270um, default syn z SD: 100pm). The synaptic time constants 7y, were drawn from a normal
distribution (mean: 1ms, default SD: 0.2ms), as were synaptic delays (syn delay mean: 1ms, default
syn delay SD: 0.2ms). The default values of the parameters as well as the different variations tested
in this study are listed in Table 1.

default apical uniform ;rgii”s rlj(z?fs small Koyt large Kout s;r;r:;:;s s\),/i!?gl:s
Rpop 250pm 125pum  500pum
Kout 500 250 1000
syn z SD 100m 108 um
syn z mean —1270pum —200um —600um
Tsyn SD 0.20ms 0.10ms 0.40ms
syn delay SD 0.20ms 0.10ms 0.40ms
J s-value 0.40nA 0.20nA 0.80nA

Table 1: Parameter combinations used for calculating the kernels, where the names of the columns corre-
spond to the parameter combinations tested in Figure 8 and Figure 11. Blank spaces indicate no change from
the default values, and only parameters that are varied between simulations are included.

4.4. Synthetic spike-trains with correlations

Synthetic spike trains with varying levels of correlations and firing rates were generated through
Multiple Interaction Processes (MIP) [Kuhn et al., 2003]. Here, a “mother spike train” was first
generated with the same firing rate as the target spike trains. The spike times were generated
through a homogeneous Poisson process using Elephant [Denker et al., 2018]. For each “child
spike train”, a fraction f of the spikes where randomly selected from the mother spike train, while
the remaining spikes were generated through homogeneous Poisson processes. Consequently, f
varies between 0 and 1, and f = 0 corresponds to uncorrelated homogeneous Poisson processes,
while f = 1 corresponds to fully correlated (identical) spike trains. Since each spike is copied with
probability f2 into two child spike trains, the correlation coefficient of the latter is given by ¢ = f2
(for details see Appendix B).

4.5. Error measures

We define the absolute squared error of the population kernel signal V (r,t) in approximating
the ground truth signal V(r,t) as E%(r) = Var [V(r,t) - f/(r,t)}, where Var[...] denotes the
variance across time, computed separately for each electrode position . The relative squared
error is defined as E2,(r) = E?(r)/max,(Var[V (r,t)]), that is, the absolute squared error at each
electrode, normalized by the maximum (over the electrodes) variance of the ground truth signal.
Note that the error is normalized by the largest value of the ground truth signal variance because the
ground truth signal will often have electrodes with very near-zero signal amplitudes, and therefore
very high, but irrelevant relative errors. In the case of the toy model (Equation (10)) that is agnostic
to spatial positions, the normalization does not involve a maximum over the electrodes.

4.6. Firing rates

Firing rates are constructed from spike trains by counting the number of spikes within time steps
of length At, and normalizing by At. For kernels generated with the toy model (Figures 3-5), the
time step duration is At = 0.1 ms, while for the simulations with biophysically detailed kernels
(Figures 6-12), itis At = 2~ 4 ms.
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4.7. Point-neuron network simulation

The point-neuron network model was a random balanced network with delta synapses [Brunel,
2000], based on the brunel_delta_nest.py example that comes with NEST. We used NEST
3.6 [Villamar et al., 2023], with the same network parameters and network states as Brunel [2000],
that is, we extracted spikes from an asynchronous irregular (Al) regime (¢ = 5, n = 2.0, J =
0.1) [Brunel, 2000][Figure 8C], and a slow synchronous irregular (Sl) regime (9 = 4.5, n = 0.9,
J = 0.1) [Brunel, 2000][Figure 8D]. The time resolution was 0.1 ms.

4.8. Mathematical derivation of error estimate
In simulations, we measure the squared error

2

E2(r) = Var [V(fr,t) - f/(r,t)} - <(V(r,t) - V(r,t))2>t - <(V(r,t) - f/(r,t))>

t

of the population kernel method as the variance of the difference signal V (r,t) — V(r,t) across
time. By definition, due to the time average (-), the error depends on the statistics of spike trains
s. In addition, in principle, it depends on all details of the single-cell spike-LFP kernels k. Yet,
for networks of biologically realistic size, the LFP is made up of many contributions, such that the
squared error E%(r) will not vary too much between different statistically equivalent realizations of
single-cell kernels. Therefore, the expectation <E2(r)>k across different realizations of single-cell
kernels k can be assumed to be informative about the error E2(r) for one particular realization.
The expected squared error is

(5 = <<(V(r,t) _ V<r’t))2>t ~{((vern- V(r,t))>j>k

(e == [P - (o) ])), (1)

k
Inserting the definition of the ground truth LFP (equation (3)) and the population-kernel approx-
imation (equation (6)) yields the error expression (equation (7)) of the main text (for details see
Appendix A).
For the prediction of the relative squared error, we divide the error by the variance of the ground
truth LFP
Var [V (r,0)] = ([V(r,t) = (V(r,0),°) - (12)

On expectation, the latter time average can be calculated analogously to the error (for details see
Appendix A). This allows us to obtain some intuition on the expected relative squared error

<E2 (r)> = (Npre -1 de (Ak?(T?T) - Ck(r7 7)) (AS(T) - CS(T))
kT Nore [ dr Ag(r, 7) A4 (1) + Nere(Nore — 1) [ dr Cie(r, 7)Cs(7)

(13)

in relation to features of single-cell kernels. To do so, we employ equation (4) and write the single-
cell kernel in terms of individual extracellular potential responses h;;(r,t) = &;;Jijxi;(r, t), where
we explicitly split the synaptic strength J;; and the adjacency values &;; € {0,1} from the impulse
response x;; (7, t). The latter characterizes the LFP response, measured at time ¢ and location r, to
a unit input arriving at the synapse between neurons 7 and j. The single-cell spike-LFP correlations
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then read

Ap(r,7) = /dr’ (ko 7Yl (r, 7+ 7)),
~ Kout (Var(J) + Mean(J)?) Ay (r,7) + K2 Mean(J)*x*(r, 7)
Ci(r,7) = /dT/ (ki(r, 7")kj(r, 7" 4+ 7)),

~ K2, Mean(J)?x*(r, ),

out

Ag(r,7) — Ci(r,7) & Kou (Var(J) + Mean(J)?) Ay (r, 1),

s0 with Mean(J) and Var(.J) denoting the mean and variance of synaptic weights, impulse-response
s statistics y?(r,7) and A, (r, 7), and K, the outdegree of presynaptic neurons (see Appendix A).
s Interestingly, the error £ ~ /A, — Cy (square root of numerator in equation (13)) - due to can-
ss  cellations between Ay and CY, - scales as O(v/Kout) (Figure 8B2), while the signal standard de-
s viation ~ /...A; + ...C) (square root of denominator in equation (13)) scales as O(K,ut) (Fig-
ss Ure 8B1), such that the relative error decreases with postsynaptic population size as O(1/v/Kout)
s (Figure 8B3). Furthermore, the signal standard deviation is roughly independent of the variability in
s synaptic strengths (Figure 8C1). This variability Var(.J) only enters in the term of A, that is propor-
ss tional to K¢ and thus subleading compared to the other terms in A, and C}, that are proportional
s 10 K2, In the error these terms proportional to K2, exactly cancel, such that the error increases
so  With larger variability in synaptic strengths (Figure 8C2). The closer the different synaptic locations
st Kk and !l are (see narrow vs broad input region or apical/default vs uniform), the larger the product of
w2 differentimpulse responses xx;(r, 7')xu:(r, 7’ + 7). Therefore, the signal standard deviation, which
ss coNtains products of different impulse responses in x2(r, 7) (see Appendix A), grows when synap-
s+ tic locations become more similar (Figure 8A1,D1). In contrast, the error only depends on A, (7, 7),
es Which in turn only depends on products of the same impulse responses (see Appendix A). There-
ws fore, the error is less sensitive to the width of the input region (Figure 8D2). Still, both impulse
7 response statistics y?(r,7) and A, (r,7) depend strongly on the type of input region, leading to
es a strong dependence of the signal standard deviation and error on the input region (Figure 8A2).
s Also, both terms increase the smaller the radius of the population, because LFP-generating sources
s0 are closer to the recording electrode. Therefore, both the signal standard deviation (Figure 8E1)
et and the error (Figure 8E2) increase with smaller population radius.

ez 4.9. Code availability

613 Simulation code to reproduce all figures in this paper, as well as all the simulated kernels are
e« freely available from https://github.com/torbjone/kernel_validity.git.
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Appendix A. Derivation of error formula
Here we provide details for the derivation of the expected squared error between the ground
truth LFP and the population kernel approximation. Inserting the definitions
Npre
Vi t) = (ki(r,-) % s5) (1)
j=1
Npre

—Z/di (r,7)s;(t — 1) (A.1)

and
~ Npre —
Virt)=> (k(r,)*s;) (t)
j=1
Nore
Npre = 1/di ,7)s;(t =) (A-2)

into equation (11), we obtain

Npre 1 Npre
drk;(r,7)[s;(t = 7) —v;] — — drki(r,7)[s;(t —T) — v,
(& < >/ e =) i) e O [k )t - >
b= tk

with firing rates v; = (s;(t — 7)),. Multiplying out the square then yields

Npre 2 Npre 1 Npre

Z/dT/dT i m)ki(r, ') — Zki(rm)kl(rﬁ) ~5 Zk (r, )k (r, ")

Gil=1 Nore i=1 Nore ik=1 &

x([si(t —7) =yl [si(t = ") — i),

The averages over time (-), yield the spike-train covariances c;; (7' —7) = ([s;(t — 7) — v;] [si(t — ") — 1)),
which for stationary spike-train statistics only depends on the relative time between spike trains. For

the average over single-cell spike-LFP kernels (-), one splits the sum Ejl into a sum over equal

indices Zj and a sum over unequal indices Z#z to obtain after some simplifications

(E2(r))), = (Nore — 1) /dT (Ak(r,7) = Ci(r, 7)) (As(1) = Cs(7))

with population-averaged spike-train autocovariance As(7) = Ntre ZN_p'e ([s;(t + 1) —v5][s5(t) = v5]),

7j=1
population-averaged spike-train cross-covariance C; ( )= m Zj\;‘g’f ([s;(t +7) —vj][si(t) — i]),o
single-cell spike-LFP kernel autocorrelation Ay ( r T) de Nk, (r 7'+ 7)), and single-
cell spike-LFP kernel cross-correlation Cy(r,7) = [dr’{( (r T )k (r '+ 7)), fori # j. In

practice, to calculate A and Cj, one replaces the expectation value over single-cell spike-LFP
kernel statistics by an empirical average that can be measured

Npre
Ag(r,7) =N Z/di’I”T i(r, ' 4 7),
Pre =1
Npre
Ci(r, T /dirT r, 7 +T
k(r,7) = NpreNpre ; i ).
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Analogous to the calculation above, the variance of the ground truth LFP can be calculated on
expectation

<<[V(Tat) - <V<"'at)>fj2>t>k = J\/vpre/d'r Ap(r,7)As(T) + Npre(Npre —-1) /dT Cr(r,7)Cs(7) .
(A.3)
By expressing A, and C}, in terms of impulse responses (equation (4)), we obtain

Ap(r,7) = / dr' (ky(r, 7 Vko(r, 7 + 7)),

Npoat

S /dT i (0,7 Vi (2,7 + 7))

m,n=1

/dT szJm,> <sz("" T )X'm("’ T —‘,—7'))

m,n=1

/dT 7 Xmi (7, 7 )X (r, 71+ 7))

uut

+ Z /d’r Imi) g (Ini) g (Xma (7, T )> (Xni(r, ™ +7)>

m#n

~ Kout (Var(J) + Mean(J)?) Ay (r, 1) + K2 Mean(J)*x*(r, 7),
Col(r,7) = / dr’ k(v )y (v, 7 4 7)),

B /dT/ (ki(r, 7)) (kj(x, 7"+ 7)),
~ K2 Mean(J)Q)ZQ(T,T)

out

Ap(r,7) — Cp(r,7) = Kout (Var(J) + Mean(J)z) A (r,T),

with Mean(.J) = (Jxi) ; and Var(J) = (J2;) , — (Jxi)" the mean and variance of synaptic weights,
Koyt the outdegree of presynaptic neurons, and impulse-response statistics

1 Kout 1 Kout
) = [ dr' 2= (mi (7)) g7 D (i, 7'+ 7)),
out m=1 out n—1
out Npre Kout 1 Npre
dr’ X T T X 4(7‘7 7 + T)
/ out m=1 pre ; m nz::l Npre lz:; "

MN

(rr) = [ i (77 Yo 4 7)),
out

m=1
1 Kout 1 Npre

dT/K Z Xni (P ) Xomi (7, 77+ 7).
out m=1 pre i=1
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es Appendix B. MIP spike train generation and correlations

627 Let’s consider a homogenous Poisson spike train m(t) (“mother spike train“) of rate v und in-
«s dependent Poisson spike trains S;(t) of rate (1 — f)v. We define child spike trains s;(t) as a
w0 Superposition of S;(t) and m;(t), where m;(t) is a Poisson process of rate fv that consists of a
s randomly chosen fraction f of spikes from the mother spike train m(t). By definition, each child
s spike train is then a Poisson process with rate v and auto-covariance A¢(7) = vd(7). Since each
<2 spike of the mother spike train is selected with probability f2 to be copied into m;(t) and m;(t), the
s child spike trains s; and s; share a common Poisson spike train of rate f2v. The cross-covariance
s between child spike trains is therefore C(7) = f?vd(7), and the correlation coefficient is ¢ = f2.
635 Since both auto- and cross-covariances of MIP spike trains are proportional to the firing rate,
e the latter exactly cancels in the relative error of the population kernel approximation (equation (13)).
sz The absolute error is given by the difference A;(7) — Cs(7) = v(1 — ¢)d(7) and therefore rather
es  iNsensitive to correlations c that are small (Figure 5B, Figure 10B). For the signal amplitude, cross-
s covariances are, however, amplified by a factor Ny (equation (A.3)), leading to a strong depen-
s0 dence on c of the signal amplitude (Figure 5A, Figure 10A) and the relative error (Figure 5C, Fig-
sa1 Ule 100)
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Figure C.13: All tested LFP kernels and the resulting LFP signals. The LFP kernels for all tested param-
eter combinations in Table 1 (top row), and the resulting LFP signals (bottom row). The spike trains were from

an uncorrelated Poisson process with a firing rate of 1057 1.
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