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Abstract

Neural activity at the population level is commonly studied experimentally through measurements of
electric brain signals like local field potentials (LFPs), or electroencephalography (EEG) signals. To
allow for comparison between observed and simulated neural activity it is therefore important that
simulations of neural activity can accurately predict these brain signals. Simulations of neural ac-
tivity at the population level often rely on point-neuron network models or firing-rate models. While
these simplified representations of neural activity are computationally efficient, they lack the explicit
spatial information needed for calculating LFP/EEG signals. Different heuristic approaches have
been suggested for overcoming this limitation, but the accuracy of these approaches has not fully
been assessed. One such heuristic approach, the so-called kernel method, has previously been
applied with promising results and has the additional advantage of being well-grounded in the bio-
physics underlying electric brain signal generation. It is based on calculating rate-to-LFP/EEG ker-
nels for each synaptic pathway in a network model, after which LFP/EEG signals can be obtained
directly from population firing rates. This amounts to a massive reduction in the computational effort
of calculating brain signals because the brain signals are calculated for each population instead of
for each neuron. Here, we investigate how and when the kernel method can be expected to work,
and present a theoretical framework for predicting its accuracy. We show that the relative error of
the brain signal predictions is a function of the single-cell kernel heterogeneity and the spike-train
correlations. Finally, we demonstrate that the kernel method is most accurate for the dominating
brain signal contributions. We thereby further establish the kernel method as a promising approach
for calculating electric brain signals from large-scale neural simulations.

1. Introduction1

Science is at its most productive when models can make experimental predictions so that ex-2

perimental results can inform and improve the models. Measurable brain signals should therefore3

be available from simulations of neural activity. The brain is studied at many different scales, from4

the molecular scale to behavior, and the different scales rely on models at different levels of ab-5

straction. It is therefore important to have well-founded methods to calculate different types of brain6

signals, from neural simulations at different levels of abstraction (Figure 1) [Einevoll et al., 2019].7

To study neural activity at the level of neural populations, it is common to rely on measure-8

ments of local field potentials (LFPs), which is the low-frequency part of the extracellular potential9
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measured inside the brain, or on electroencephalography (EEG) signals, which is the extracellular10

potential measured outside of the head. The most accurate way to calculate LFP and EEG signals11

from simulated neural network activity is to use biophysically detailed multicompartment neuron12

models, coupled with volume conductor theory [Holt and Koch, 1999; Einevoll et al., 2013; Ness13

et al., 2022; Halnes et al., 2024]. For single neurons or small populations, this is in principle straight-14

forward [Hagen et al., 2018; Næss et al., 2021], and this approach has been pursued also for large15

recurrently connected networks by a handful of studies [Reimann et al., 2013; Tomsett et al., 2015;16

Hagen et al., 2018; Dai et al., 2020; Baratham et al., 2022; Borges et al., 2022; Rimehaug et al.,17

2023; Romani et al., 2024].18

However, biophysically detailed modeling of neural activity at the population levels is extremely19

computationally demanding, and often not viable in practice [Einevoll et al., 2019]. Therefore, when20

studying neural network activity, it is more common to rely on simplified representations of neurons21

and neural activity, through for example point-neuron network models [Gerstner et al., 2014; Pot-22

jans and Diesmann, 2014; Billeh et al., 2020] or firing-rate models [Deco et al., 2008; Gerstner23

et al., 2014; Sanz-Leon et al., 2015]. These simplified representations of neural activity are more24

computationally tractable and typically orders of magnitude faster than biophysically detailed simu-25

lations [Billeh et al., 2020], but many brain signals, like the LFP and EEG signals, are generated by26

spatially distributed neural membrane currents, which are not available from the simplified schemes27

(since the spatial structure of individual neurons is not explicitly modeled) [Halnes et al., 2024]. An28

important topic is therefore what is the best approach for calculating approximations of different29

brain signals from neural activity simulated from point-neuron network simulations or firing-rate30

models.31
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Figure 1: Measurable signals should be available from neural simulations at different levels of abstrac-
tion. Neural circuits, here represented by a putative cortical column (panel A), are studied at different levels
of biological detail, depending on the scientific question (panel B). By using a forward model (panel C) one
can calculate measurable signals (panel D) from neural activity simulated at different levels of abstraction. In
general, calculations of such brain signals are only biophysically well-founded when using biophysically de-
tailed cell models, while simplified representations of neurons will require “heuristic” approaches where it can
be hard to estimate the accuracy of the resulting brain signal predictions.

Several different approaches to calculate LFP/EEG/MEG signals from point-neuron or firing-32

rate models have been suggested [Deco et al., 2008; Sanz-Leon et al., 2015; Mazzoni et al., 2015;33

Hagen et al., 2016; Teleńczuk et al., 2020a; Martínez-Cañada et al., 2021; Glomb et al., 2022;34

Tesler et al., 2022], but quantitative evaluations of the accuracy of such approaches have often35

been hard to come by, due to the lack of “ground truth” signals to compare the approximations to. It36

has therefore often been unclear how well these approximations work, although there are important37

exceptions that we discuss later.38

A common approach with a long history to get approximate LFP/EEG signals from firing-rate39

models is simply to assume that the signal is proportional to the firing rate [Deco et al., 2008]. For40

EEG/MEG signals, it is sometimes instead assumed that an equivalent current dipole is propor-41

tional to the firing rate, and the dipole can be inserted into a head model to obtain the EEG/MEG42

signal [Sanz-Leon et al., 2015]. Although this approach can certainly be useful, it neglects some43

basic principles in how these signals are generated, and as a result, some error will be introduced44

in the time-domain of the predicted signals [Mazzoni et al., 2015; Hagen et al., 2022; Halnes et al.,45

2024].46

Hagen et al. [2016] presented the so-called “hybrid scheme”, where the neural network activity47

is first simulated in a point-neuron network, and saved to file. Afterward, in a separate step, the48
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spiking activity is replayed onto biophysically detailed cell models, from which the resulting LFP49

signals can be calculated. The hybrid scheme is a computationally expensive approach because it50

relies on representing all neurons that are within the reach of the recording electrode [Lindén et al.,51

2011; Kajikawa and Schroeder, 2011] with a high level of morphological and electrophysiological52

detail. On the other hand, it is well grounded in the biophysics of extracellular signal generation.53

Hagen et al. [2016] also used the hybrid scheme to test a “kernel approach”, where they calcu-54

lated LFP kernels for each synaptic pathway in the model. Each population kernel represented the55

average postsynaptic LFP contribution given an action potential in the presynaptic population, and56

the LFP signal could then be approximated by convolving the firing rate of each presynaptic popula-57

tion with the corresponding population kernel and summing the LFP contributions for each synaptic58

pathway in the model. This kernel approach was confirmed to give accurate approximations to59

the LFP, at a very low computational cost once the kernels were known because the LFP could60

be predicted directly from the firing rate of each population, instead of from the transmembrane61

currents of each individual neuron. A major drawback of this approach was that the calculation of62

the population kernels was still very computationally demanding.63

Mazzoni et al. [2015] tested so-called “proxy” methods for calculating LFP signals (later also64

extended to EEG signals by Martínez-Cañada et al. [2021]) directly from point-neuron network65

simulations, and found that a weighted sum of synaptic currents, which are available from point-66

neuron network simulations, could be used to predict the LFP calculated by a more comprehensive67

approach, similar to the “hybrid scheme” discussed above. The proxies were demonstrated to68

be quite accurate and provided excellent LFP predictions for the use-case considered. On the69

other hand, they are in a sense phenomenological and typically poorly grounded in the underlying70

biophysics of extracellular potentials, which can in some cases be a drawback.71

Teleńczuk et al. [2020a] used experimentally measured LFP kernels from spike-trigger aver-72

aged LFP recordings, and used these kernels to approximate LFP signals, by convolving them with73

firing rates from point-neuron network simulations. This approach has the advantage of being inde-74

pendent of the modeling choices that are required when simulating LFP kernels [Teleńczuk et al.,75

2020a,b]. This approach was later expanded upon by Tesler et al. [2022], to also enable MEG signal76

predictions from point-neuron network models or firing-rate models. However, kernels measured77

from spike-triggered averages are potentially troubled by correlations, and Hagen et al. [2016] ob-78

tained different results when calculating kernels directly, and from spike-triggered averages, even79

within the same model. This can also be directly observed, as the measured kernels are not always80

causal, which we would expect them to be given that they represent the postsynaptic contribution81

from a presynaptic spike. Further, the measured excitatory LFP kernels were proposed to be disy-82

naptic inhibitory kernels [Teleńczuk et al., 2017; Teleńczuk et al., 2020a], illustrating a problem with83

interpreting results based on LFP kernels from spike-triggered averages. Note that the degree to84

which measured spike-triggered LFP kernels are contaminated by correlations will depend on the85

scenario. For example for the monosynaptic thalamic activation of cortical postsynaptic target cells86

considered by Swadlow et al. [2002], the contamination was very small.87

The earlier attempts to model LFP kernels have required a large number of single-cell simula-88

tions [Hagen et al., 2016, 2017; Teleńczuk et al., 2020b] to represent the postsynaptic population.89

However, a very efficient yet highly biophysically detailed framework for calculating population ker-90

nels was recently proposed by Hagen et al. [2022]. In this framework, a single biophysically detailed91

cell simulation was sufficient to accurately predict a population kernel by first obtaining the mem-92

brane currents of the single postsynaptic neuron in response to conductance-based synaptic input,93

and letting this represent the population-averaged membrane currents following synaptic activa-94

tion. All other effects, including the spatial extent of the population and the variability of synaptic95

parameters, were then accounted for by a series of linear convolutions in the spatial and temporal96

domains. This approach greatly increases the applicability of the kernel approach, since LFP/EEG97
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kernels can be calculated accurately and efficiently, even by common laptop computers. The LFP98

calculated from the kernel approach by Hagen et al. [2022] was tested against the “ground truth”99

LFP calculated from a multicompartment, biophysically detailed neural network simulation, and the100

kernel approach was found to be quite accurate in most scenarios.101

As reviewed above, several recent projects have used the kernel approach to estimate LFP,102

EEG, or MEG signals directly from firing rates [Hagen et al., 2016; Teleńczuk et al., 2020a,b; Skaar103

et al., 2020; Hagen et al., 2022; Tesler et al., 2022], and it has proved a promising tool for future104

studies of neural activity at the population level. Therefore, it is important to have a good qualitative105

understanding of how the kernel approach works, and good quantitative measures of how accurate106

it is under different circumstances.107

In this study, we start by building a better understanding of how and when the kernel method108

can be expected to work, and when caution is advised. We then develop a theoretical framework109

for predicting the accuracy of the kernel approach and show that the relative error is a function of110

the single-cell kernel heterogeneity and spike-train correlations. Finally, we demonstrate that the111

kernel approach is most accurate for the LFP contributions that can be expected to dominate the112

LFP signal, like highly concentrated and correlated synaptic input to large populations of pyramidal113

neurons.114

2. Results115

Many measurable brain signals, like LFPs, ECoGs, EEGs, and MEGs are expected to share the116

same biophysical origin, namely the membrane currents following large numbers of synaptic inputs117

to populations of geometrically aligned pyramidal neurons [Ness et al., 2022; Halnes et al., 2024].118

To accurately calculate these signals from simulated neural activity, we therefore need to take into119

account all synaptic events.120

Since volume conduction is linear [Miceli et al., 2017], the compound extracellular potential121

V (r, t) =

Npost∑
i=1

Vi(r, t) (1)

generated by a population of Npost neurons is a linear superposition of the individual cell contri-122

butions Vi (i = 1, . . . , Npost). Therefore, calculating the extracellular potential of a population of123

Npost neurons is typically done by focusing on the synaptic input to each cell, calculating single-124

cell contributions (see Methods), and finally summing all cells (Figure 2A), here referred to as the125

postsynaptic perspective.126
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A Bpostsynaptic
perspective

presynaptic
perspective

Figure 2: Illustration of the principle underlying the kernel method. A: The postsynaptic perspective,
where all incoming synaptic input to a postsynaptic cell is taken into account, and the time-dependent LFP
contribution of the postsynaptic cell is calculated. The total population LFP V (r, t) is then the sum of all such
single-cell contributions Vi(r, t). This is the standard way of calculating LFP signals from neural simulations.
B: The presynaptic perspective, where all outgoing synapses from a single cell are considered. For passive
cells with static (no plasticity), current-based synapses, every action potential of a presynaptic neuron j will
evoke the same postsynaptic currents, and hence, each action potential has a fixed LFP response hij(r, t).
By taking into account all postsynaptic targets, the single-cell kernel kj(r, t) can be calculated, and the single-
cell LFP contribution can be found by convolving the single-cell kernel with the corresponding spike train of the
presynaptic cell. The population LFP is again the sum of all single-cell contributions, and if this is done for all
cells, and all external incoming synapses, the LFP calculated by these two approaches will be identical, under
the assumptions listed above.

2.1. Single-cell spike-LFP kernels127

In principle, we can also switch the perspective to each presynaptic cell: Each action potential128

from a given cell leads to an activation of the outgoing synapses, causing a distributed “extracellular129

potential flash” from all postsynaptic target cells (Figure 2B), referred to as the single-cell spike-LFP130

kernel. For simplicity, we will here refer to this as the single-cell kernel. If we convolve the single-cell131

kernel with the spike train of the presynaptic neuron, we get the extracellular potential including all132

postsynaptic effects from this neuron. If we know all single-cell kernels and corresponding spike133

trains, we can then calculate the extracellular potential as the sum of all single-cell postsynaptic134

contributions. If this is also done for external input, we have accounted for all synaptic events.135

The above argument is based on the fact that the single-cell kernel is similar each time a neu-136

ron spikes. This holds if we ignore synaptic plasticity and assume that extracellular potential con-137

tributions caused by individual synaptic activations superimpose linearly for each cell. However,138

in principle, the membrane currents of a cell depend on the joint effect of all its spiking inputs, for139

example, active dendritic channels or voltage-dependent synaptic currents cause nonlinear interfer-140

ence of inputs. However, previous work has shown that LFPs can be well predicted with quasi-linear141

approximations of ion channels [Ness et al., 2016, 2018], and that kernel-based approaches can142

give accurate LFP predictions also for conductance-based synapses [Hagen et al., 2022]. In this143
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case, the above assumption holds and we obtain144

Vi(r, t) =

Npre∑
j=1

(hij(r) ∗ sj) (t), (2)

where hij(r, t) is the LFP response of postsynaptic neuron i to an individual spike of presynaptic145

neuron j, and sj is the spike train of presynaptic neuron j. Here ∗ denotes a temporal convolution.146

If we combine equation (1) and equation (2) and rearrange summands, then we get what we refer147

to as the presynaptic perspective (Figure 2B),148

V (r, t) =

Npre∑
j=1

(kj(r) ∗ sj) (t), (3)

with the single-cell kernel149

kj(r, t) =

Npost∑
i=1

hij(r, t). (4)

This prediction of the population LFP from single-cell kernels is in the following denoted as the150

“ground truth” against which we test approximations.151

2.2. Population rate-LFP kernels152

Neurons in neural circuits often share statistical properties in terms of morphology, electro-153

physiology, connections, and spiking activity. Based on such similarities they can be grouped into154

neuronal populations. In the classical view, a population is a group of neurons with similar input155

statistics as well as similar internal properties and dynamics, such that they have similar spiking156

statistics. For the generation of LFP contributions, however, not only the spiking statistics should157

be similar for cells within a population, but also their translation into LFPs as measured by the158

single-cell kernels.159

If all single-cell kernels kj of a population of neurons were identical, then they would in particular160

be identical to the population-averaged kernel161

k(r, t) =
1

Npre

Npre∑
j=1

kj(r, t) , (5)

such that the compound LFP V (r, t) =
(
k(r) ∗R

)
(t) of the population could be perfectly predicted162

by the population rate R(t) =
∑Npre

j=1 sj(t) without the need to consider the detailed information of163

individual neuronal spike trains. The population-averaged kernel k(r, t) can therefore be inter-164

preted as a population rate-LFP kernel. For simplicity, we will here refer to this as the population165

kernel.166

In general, however, the properties and projections of neurons are only statistically similar rather167

than identical, such that the single-cell kernels differ from k(r, t). As a consequence168

Ṽ (r, t) :=
(
k(r) ∗R

)
(t) (6)

is only an approximation of the true compound LFP V (r, t). In the following, we study the error of169

this approximation and how it depends on the neuronal and the network properties.170

Single-cell kernels depend on a multitude of neuron and network features including network171

connectivity, neuronal morphology, synapse positions, electrode position and electrical properties172
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of cells, leading to potentially complicated spatio-temporal profiles. Yet they are by definition causal173

and their time course is determined by synaptic dynamics and dendritic filtering properties [Lindén174

et al., 2010]. As with LFP responses to individual synaptic inputs, the amplitude and polarity of175

single-cell kernels is expected to strongly depend on the relative position of cells with respect to the176

recording electrodes.177

Before calculating the precise shape of single-cell kernels from biophysically detailed models,178

we first show some key aspects of the population kernel approximation using a simple illustrative179

model, where single-cell kernels are defined as double-exponential functions with different ampli-180

tudes (see Methods, Figure 3A).181
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Figure 3: Illustration of kernel method with toy model. A: Two toy single-cell kernels (blue and orange),
and the mean, that is, the population kernel (black). B: Raster plot of the two corresponding spike trains, with
the same color code as in panel A. Each colored marker corresponds to a spike, and the individual spike trains
are plotted at different heights along the y-axis. C: The population rate (average number of spikes per time
bin, ∆t = 0.1ms), that is, the mean firing rate from the spike trains in panel B. D: The gray line shows the
ground truth toy LFP signal calculated as the sum of each single-cell contribution, which is again calculated by
convolving the single-cell kernels with the corresponding spike trains. The black line shows the LFP calculated
by convolving the population kernel with the population rate. The red line shows the difference between the
ground truth LFP and the population kernel LFP.

Each single-cell kernel (Figure 3A) is convolved with a different spike train (Figure 3B) and the182

resulting extracellular potential (Figure 3D) is compared to the prediction of the population kernel183

(black line in Figure 3A) that is convolved with the population rate (Figure 3C). The population184

kernel prediction generally resembles the ground truth. It is, however, different in detail due to185

the heterogeneity in single-cell spike kernels. The approximation improves at times where multiple186

neurons spike synchronously (Figure 3D t=50 ms). This hints at a more general aspect: if all spike187

trains in equation (1) are identical, then the population kernel prediction becomes exact even though188

the single-cell kernels are different. In conclusion, this simple toy model illustrates the two main189
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features that determine the quality of the population kernel prediction: spike-kernel heterogeneity190

and spike-train correlations. Predictions become poor when spike-train correlations are low and191

spike-kernel heterogeneity is large, whereas large spike-train correlations and low spike-kernel192

heterogeneity lead to low errors (Figure 4).193
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Figure 4: Error in population kernel predictions depend on kernel heterogeneity and spike-train corre-
lations. Each column shows 1000 single-cell kernels with different amplitude standard deviations ASD (top),
and different levels of spike-train correlations (middle). Spike trains with varying levels of correlations were
generated through Multiple Interaction Processes (MIP) [Kuhn et al., 2003], controlled by the parameter f ,
where f = 0 corresponds to uncorrelated homogeneous Poisson processes, while f = 1 corresponds to fully
correlated (identical) spike trains (see Methods). The mean firing rate is shown in black, and the standard
deviation in gray. The toy LFP is calculated (bottom). Relative error Erel, quantified by the normalized standard
deviation of the difference between the ground truth signal and the population kernel signal (see Methods),
vanishes for identical kernels, regardless of correlation (first column). For variable kernels with some corre-
lation, the kernel approach will result in some relative error (second column). For variable kernels and zero
correlation, the relative error will be large (third column). For perfect correlation, the relative error vanishes
regardless of kernel variability (fourth column).

This behavior of the prediction error can be derived analytically by employing a statistical de-194

scription of the setup. As mentioned above, a population of neurons is defined via statistical sim-195

ilarities between neuronal spike trains and spike kernels. In the following, we assume that both196

quantities, appearing as a product (convolution) in equation (3), are drawn from distributions with197

known means and covariances. A natural first choice for the definition of the prediction error would198

be the mean deviation Mean
[
Ṽ (r, t)− V (r, t)

]
of the population kernel prediction Ṽ (r, t) from the199

ground truth V (r, t), where Mean [·] denotes the average across time. We could then ask what this200
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quantity is on expectation across different realizations of kernels. In fact, it is zero, because each in-201

dividual single-cell kernel on expectation coincides with the expectation of the population-averaged202

kernel. This measure is therefore not informative about the prediction error of the population kernel203

method for a single realization of single-cell kernels. The error is better assessed by the standard204

deviation discrepancy of the population kernel prediction from the ground truth. The squared er-205

ror then is E2(r) = Var
[
V (r, t)− Ṽ (r, t)

]
, where Var [·] denotes the variance across time. The206

expectation of this quantity can be computed analytically (see Methods)207 〈
E2(r)

〉
k

= (Npre − 1)

∫
dτ (Ak(r, τ)− Ck(r, τ)) (As(τ)− Cs(τ)) , (7)

with ⟨·⟩k denoting the expectation across realizations of the kernels. We further introduced the208

population averaged spike-train autocovariances As(τ), the population averaged spike-train cross-209

covariances Cs(τ), and the autocorrelation and cross-correlation of single-cell kernels Ak(r, τ) =210 ∫
dτ ′ ⟨ki(r, τ ′)ki(r, τ ′ + τ)⟩k, Ck(r, τ) =

∫
dτ ′ ⟨ki(r, τ ′)kj(r, τ ′ + τ)⟩k. The expression for E2

211

shows that, as expected, the error vanishes if the population of neurons spikes in a fully correlated212

manner (Cs = As) or if all neurons have the same spike-LFP kernels (Ak = Ck). For low average213

cross-covariances Cs ≈ 0 as observed in cortex, the error is primarily determined by the size of the214

presynaptic population Npre, i.e., the number of single-cell kernels, the correlations in spike-LFP215

kernels, and the spike-train autocovariances. To assess the overall performance of the population-216

based prediction, it is useful to also consider the relative error Erel, defined as the expected error E217

normalized by the standard deviation of the ground-truth signal (see Methods). For our toy model,218

the analytical predictions for the absolute and the relative error perfectly match the results of nu-219

merical simulations (Figure 5). Theory and simulation confirm the anticipated trend that the error220

grows with increasing kernel heterogeneity and decreasing spike-train correlations (Figure 5B,D).221

The effect of spike-train correlations is, however, much more pronounced in the relative error (Fig-222

ure 5C,E), as can be explained by the theory (see Appendix B). Note that the relative error is low in223

regions where the signal amplitude is large (Figure 5A).224
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Figure 5: Parameter scan for simple toy-model LFP. A: The LFP amplitude (quantified by its standard
deviation across time) for different levels of amplitude variability in single-cell kernels, and different levels
of correlations between spike trains. B: Observed absolute error, quantified by the standard deviation of
the difference between the ground truth signal and the population kernel signal. C: Observed relative error,
quantified by the standard deviation of the difference between the ground truth signal and the population kernel
signal (panel B), normalized by the ground truth signal amplitude (panel A). D, E: Same as in panels B and
C, but predicted from theory (equation (7)). Correlated spike trains were generated using MIP processes (see
Methods).

2.3. Sources and effect of kernel heterogeneities225

As we have seen, the error depends on single-cell kernel heterogeneities. After having derived226

the general dependence of the population kernel prediction on the statistics of single-cell kernels227

and spike-train correlations, we next investigate more systematically where heterogeneity in single-228

cell kernels stems from. To this end, we need to go beyond the toy model of the previous section and229

employ a mechanistic model of extracellular potential generation based on the spatial distribution230

of cells, connectivity specifications and biophysically detailed cell models.231

We consider LFP and EEG signals from cortical populations. The major contribution to these232

signals stems from synaptic inputs onto pyramidal neurons [Hagen et al., 2016; Halnes et al., 2024].233

In the following, we therefore investigate the LFP and EEG kernels of a population of layer 5 pyra-234

midal neurons, positioned around a linear multi-contact electrode that records the LFP at different235

depths, while the EEG is recorded outside the scalp (Figure 6A). Synaptic inputs from a single236

presynaptic neuron are modeled as spikes delivered to a random subset of neurons in the con-237

sidered postsynaptic population. To account for the natural heterogeneity in cortical connectivity,238

parameters such as synapse locations, synaptic strengths, time constants, and delays are ran-239

domly drawn from predefined distributions. The calculations of postsynaptic membrane currents240

and resulting extracellular potentials are based on a morphologically reconstructed pyramidal neu-241

ron from Hay et al. [2011]. A single-cell kernel represents the post-synaptic LFP (EEG) response242

to the firing of a single presynaptic neuron. The population kernel corresponds to the average of243

the single-cell kernels obtained for different presynaptic neurons, each targeting different subsets244

of neurons in the postsynaptic population. Each population kernel represents one specific synap-245

tic pathway from a given presynaptic population to a given postsynaptic population. Details of the246
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setup outlined here are described in Figure 6 and Methods. In the following, we assess the sources247

of kernel heterogeneities by systematically varying the different features of this setup.248

som
a depth
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Figure 6: Effect of neuron and synapse heterogeneity on the variability of single-cell LFP kernels. A:
A population of cortical pyramidal neurons (morphologies depicted in shades of light gray and soma locations
as black dots) receives synaptic input from a presynaptic population. Each incoming axon forms, in total, Kout

connections with different postsynaptic neurons. The strength J of each synapse is randomly drawn from a
lognormal distribution. The synaptic time constant τsyn and the synaptic delay are drawn from normal distri-
butions (graphs to the left). The vertical position of each synapse is drawn from a normal distribution (green
curve to the right). Some exemplary synapse positions are plotted on the postsynaptic population as green
dots. Vertical soma positions are drawn from a capped normal distribution (black curve to the right). Horizontal
soma positions are uniformly distributed on a disc within radius Rpop. The LFP response to an activation of
all Kout synapses of a single incoming axon is calculated for different cortical depths (dark red dots). The
EEG response outside the head, directly above the population, is calculated using a simple spherical head
model. For each parameter configuration, we generate 100 single-cell kernels resulting from different random
realizations of neuron and synapse parameters. Each of these kernels describes the postsynaptic LFP (EEG)
response to the firing of a different presynaptic neuron. B–D: LFP and EEG responses for different synaptic
target zones (B: apical; C: basal; D: uniform). Gray: single-cell kernels. Black: population kernel. The “basal
input” case is used as the “default case” throughout this study. E: Mean (solid curves) and standard deviation
(bands) of the maximum LFP deflection at different cortical depths for different synaptic target zones (see
legend). See Methods for details on the model and parameter values.

It is well known that the LFP/EEG response of individual cells to synaptic input strongly depends249

on the location of the synapses [Lindén et al., 2010; Lindén et al., 2011; Næss et al., 2021; Ness250

et al., 2022]. Since the single-cell kernel is the superposition of such signals from all target cells251

of a given spike, we expect that this dependence translates into a strong influence of synaptic252

locations on the shape of the single-cell kernels. Indeed, we find that the single-cell LFP/EEG253

kernels looked very different when stimulating cells in the population only apically, only basally, or254

uniformly (Figure 6B-E).255

We notice substantial variability in single-cell spike kernels (light gray), however, for the cases256

of apical or basal input we observe that different single-cell kernels seem to have a similar overall257

shape, and therefore a pronounced population kernel. In the case of the uniform input, there is more258

diversity in single-cell LFP kernels, such that the population kernel has very low signal amplitude259
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at all depths. The reason is that individual apical or basal inputs lead to rather stereotypic (but260

opposite) LFP/EEG responses, irrespective of the exact location of the synapse on the dendrite.261

In contrast, when considering all possible input locations (uniform) the diversity in the LFP/EEG262

responses to individual synaptic inputs is larger, leading to substantial cancellation. Furthermore,263

we notice that the variability seems to be higher close to the input region and decreases with264

distance from the input region. As a result, there is generally less kernel heterogeneity in the EEG265

kernels than in the LFP kernels (Figure 6B-D).266

By choosing a set of kernels, first from the basal input which we will treat as the “default case”267

(Figure 6C), and combining them with spike trains (see Methods), we can then calculate the LFP268

signal by convolving each individual kernel (Figure 7A, gray curves) with its corresponding spike269

train (Figure 7B, individual spike trains in gray) and summing the results for all single-cell contri-270

butions (Figure 7C, gray curves). This is what we treat as ground truth in the following analysis.271

Further, we convolve the population kernel (Figure 7A, black curves) with the population rate (Fig-272

ure 7B, black line) to obtain the population kernel LFP (Figure 7C, black curves). For brevity, we273

first focus on the LFP signal, but the general results also apply to EEG signals, which we will get274

back to later.275

To evaluate the accuracy of the population kernel approach in approximating the ground truth276

case, we compare the LFP signals (Figure 7C black versus gray curves). We calculate the observed277

relative error (see Methods), and compare to the relative error predicted from theory, and find them278

to be almost indistinguishable, demonstrating that the theory is well suited to predict the error279

(Figure 7D).280

We can now evaluate the error of the kernel approach for different parameters of the kernels.281

To evaluate the relative importance of different factors, we compare different parameter configura-282

tions to the “default case” shown in Figure 6C and Figure 7. We start with uncorrelated Poisson283

spike trains. In the following analysis, we will only show LFP amplitudes and errors but kernels284

from all tested parameter combinations (see Methods, Table 1) and resulting LFPs are shown in285

Figure C.13.286
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Figure 7: Example of LFP kernels, spike trains, and the resulting LFP signals. A: The LFP kernels at
different depths (see Figure 6A) with each single-cell kernel in gray and the population kernel in black. The
kernels shown here are from the “default” case, corresponding to Figure 6C. B: Raster plot of uncorrelated
spike trains (see Methods) with a firing rate of 10 s−1. Below the spikes, the population firing rate (constructed
by summing all individual spike trains) is shown in black. C: The ground truth LFP signal (gray), the population
kernel LFP signal (black), and the difference between them (red), at different depths. D: The relative error at
different depths (see Methods), either observed from simulations (solid curve) or predicted from theory (dotted
curve).

For basal or apical synaptic input (Figure 8A1, black or brown curves), the ground truth and the287

population kernel LFP give indistinguishable predictions for the signal amplitude at different depths288

(the signal amplitude is here represented by the signal standard deviation). This is not the case289

for the uniformly distributed synaptic input (Figure 8A1, purple curves), which has a much lower290

amplitude, and a pronounced difference between the ground truth and the population kernel LFP.291

This is reflected in the error (Figure 8A2) and the relative error (Figure 8A3), where we observe292

very high relative errors at all depths for the uniform input, and substantially lower error for apical293

or basal input. Furthermore, for the latter two cases, the error decreases with distance from the294

input site. This is in agreement with our earlier observations regarding the kernels (Figure 6B-295

E). Notice also that the observed error (Figure 8A2-A3, solid curves) and the error predicted from296

theory (Figure 8A2-A3, dotted curves) closely overlap, illustrating again that the theory is perfectly297

able to predict the error.298

Intuitively we would expect the number of postsynaptic targets per neuron, Kout, to strongly299

affect the signal amplitude and the error, since more postsynaptic targets can be expected to in-300

crease the amplitude and decrease the variability of the kernels. The reason for this low variability301

is that each single-cell kernel corresponds to a sum of many extracellular potential responses hij .302

These are all “activated” simultaneously by the incoming spike such that differences in hij to some303

degree average out. As a consequence, we would expect the population kernel prediction to be-304

come significantly worse if neuronal outdegrees are small. This is indeed the case if we reduce305

the outdegree Kout towards lower values (Figure 8B1-B3). A theoretical analysis confirms that the306

relative error decreases as 1/
√
Kout (see Methods).307

The synaptic parameters we consider are the synaptic weight, the synaptic time constant, and308

the synaptic delay. The synaptic weights are lognormally distributed in analogy to Hagen et al.309

[2016, 2022], while the synaptic time constants and delays are normally distributed. As predicted by310

the theory (see Methods), decreasing or increasing the standard deviations of these distributions by311

a factor of two has a negligible effect on signal amplitudes (Figure 8C1), while the error increases312
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with increasing variability (Figure 8C2-C3). We confirmed that the effect on the error is almost313

entirely determined by the weight distribution, while the time constants and delays have a negligible314

effect (results not shown).315

The spatial spread of the synaptic input is seen to have an important effect on both the signal316

amplitudes (Figure 8D1) and the errors (Figure 8D2-D3), where a broader region of input gives317

a much weaker signal and much larger relative errors, similarly to what we saw for the uniformly318

distributed synaptic input (which can be seen as an extreme case of a broad input region, Fig-319

ure 6D,E).320

When the postsynaptic cells are spatially concentrated, we find a larger LFP amplitude in the321

center of the population as expected (Figure 8E1). The relative error is however only weakly af-322

fected (Figure 8E3).323
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Figure 8: Comparison of how different parameter configurations affect LFP amplitude and population
kernel errors. For uncorrelated Poisson input with a rate of 10 s−1 (see Methods), the figure shows the
standard deviation of the LFP at different depths (column 1), and the absolute (column 2) and relative error
(column 3) from using the population kernel, for different modifications of the original parameter set (“default”).
Each row corresponds to varying a certain feature. A: Synaptic input region. B: Number of postsynaptic
targets Kout (outdegree). C: Variability of synaptic parameters. D: Spread of the synaptic input in the depth
direction. E: Radius of the population.
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2.4. Sources and effect of spike correlations324

To evaluate the error of the kernel approach, we also need to consider the effect of different325

types of spiking statistics, with different levels of correlation. To this end, we employ the same326

setup described in the previous subsection but replace the uncorrelated Poissonian input spikes327

with spike trains generated by two different methods. In a first approach, we create spike trains as328

realizations of a Multiple Interaction Process (MIP; Kuhn et al. [2003]) with firing rate ν, fraction f329

of shared spikes, and pairwise correlation coefficient c = f2. With this model, the firing rate and330

the level of correlation can easily be controlled, but the auto- and cross-correlations of the resulting331

spike trains are delta-shaped and thus rather artificial. As an alternative approach, we employ332

a recurrent point-neuron network model of excitatory and inhibitory neurons (“Brunel network”;333

[Brunel, 2000]) that can operate in different dynamical regimes and thereby produce spike trains334

with a more natural correlation structure. Here, we use the same parameters and corresponding335

network states described in Brunel [2000], and extract spikes from the asynchronous irregular (AI;336

Figure 9C), and the slow synchronous irregular regime (SI slow; Figure 9D).337
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Figure 9: Generating different types of correlated spiking. A,B: Spiking activity generated by Multiple In-
teraction Processes (MIP; Kuhn et al. [2003]) with firing rate ν = 10 s−1 and correlation coefficients c = f2 = 0
(A) and 0.01 (B). C,D: Spiking activity generated by a recurrent network of point neurons [Brunel, 2000] op-
erating in the asynchronous irregular (“AI”; C) and in the slow synchronous irregular regime (“SI slow”; D).
Top panels: Raster plots for 100 exemplary neurons. Bottom panels: Normalized spike-train auto- (black) and
cross-covariance (gray) functions. The depicted curves represent population averaged correlations obtained
from binned spike trains of an ensemble of 100 neurons, with an observation time of 6.1 s, and a binsize of
2−4 ms. See Methods for details on the spike-generation models and parameter values.

In the parameter configurations discussed above, we used uncorrelated spike trains. However,338

as earlier discussed, the spike-train correlation will also affect the error (equation (7)). We therefore339
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combine the kernels from the default case used above, with spike trains exhibiting different levels340

of correlation, including those illustrated in Figure 9. The amplitude of the LFP is highly dependent341

on the spike trains, and for the MIP spike trains the amplitude increases with both firing rate and342

correlation (Figure 10A).343

The absolute errors from the MIP spike trains appear roughly independent of the correlation,344

but dependent on the firing rate (Figure 10B), while the relative errors are instead independent of345

the firing rate but dependent on the correlation. This is confirmed by theory (see Appendix B) and346

in line with earlier observations in Figure 5B, where we saw in a toy model that the absolute error is347

only dependent on the correlation for very high levels of correlations (f > 0.1). The lowest relative348

error is from the Brunel SI slow state. This is as expected, because of the highly correlated spiking349

activity.350

0 10 20
LFP amplitude (µV)

−1500

−1250

−1000

−750

−500

−250

de
pt

h 
(µ

m
)

A

ground truth
kernel method

0 1 2 3
error (µV)

B

observed
theory

0.0 0.1 0.2
relative error

C

MIP, f=0.0, ν=10 s⁻¹
MIP, f=0.1, ν=10 s⁻¹

MIP, f=0.0, ν=50 s⁻¹
MIP, f=0.1, ν=50 s⁻¹

Brunel, AI
Brunel, SI slow

Figure 10: The effect of spiking dynamics in population kernel errors. A: For the default kernels (Fig-
ure 6C), the amplitude of the LFP signal at different depths is shown for different types of spiking activity, both
for the ground truth case (solid lines), and the population-kernel case (dashed lines). B: The absolute error
across depths, observed in simulations (solid lines) and predicted from theory (dotted lines). C: The relative
error across depths, observed in simulations (solid lines) and predicted from theory (dotted lines).

2.5. Combined effect of kernel heterogeneity and spike-train correlations351

We summarize the results in Figure 11A-B, which combines different kernel parameters with352

different types of spiking activity. If we start by focusing on the kernel parameters (rows), we see353

that in all cases, uniform synaptic input gives low signal amplitudes and large relative errors. The354

next highest relative errors are for the case with the broader synaptic input region, which together355

with the uniform input case demonstrates the importance of the spatial spread of the synaptic356

input. The lowest relative errors are for the large postsynaptic population (large Kout), followed by357

the narrow input region. If we instead focus on the different types of spiking activity (columns), we358

see that the lowest relative error is for Brunel SI slow, while the highest relative error is from the359

uncorrelated MIP processes.360

A convenient rule-of-thumb emerges from the results discussed above: The relative error asso-361

ciated with applying the population kernel method is in general inversely proportional to the signal362

amplitude (Figure 11C). This is an important insight because it means that we can expect the pop-363

ulation kernel approach to work best for the synaptic pathways that are dominating the LFP signal,364

and worst for the synaptic pathways that have a weak LFP contribution. Note that this relationship365

also holds for the EEG signal, where the error is also substantially lower (Figure 11C, gray dots). As366
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an illustrative example, it has been argued that the LFP and EEG signal is mainly driven by periso-367

matic inhibitory input to pyramidal cells [Hagen et al., 2016; Teleńczuk et al., 2017; Teleńczuk et al.,368

2020a,b; Hagen et al., 2022], while excitatory input to pyramidal cells is less important, as it is more369

uniformly distributed across the postsynaptic pyramidal cells, and therefore gives a relatively weak370

contribution to the LFP/EEG signal. In this case, we would also expect a large relative error for the371

excitatory-to-excitatory pathway, but since this synaptic pathway is in this case only associated with372

a minor LFP/EEG contribution, the high relative error might be acceptable.373
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Figure 11: Summary of errors for different kernel parameters and different types of spiking activity. A:
Maximum ground truth LFP amplitude across depths for different combinations of kernel parameters (rows)
and spiking activity (columns). B: Maximum observed relative errors across depths, for different combinations
of kernel parameters (rows) and spiking activity (columns). The rows and columns are sorted so the largest
relative errors are in the bottom left, while the lowest relative errors are in the top right. C: The relative error
as a function of the signal amplitude for the LFP signal (black dots), and for the EEG signal (gray dots) for all
parameter combinations shown in panels A and B. Since the EEG signal intrinsically has a much lower signal
amplitude, the LFP and EEG signals are normalized by the maximum observed signal amplitude seen in either
of the two signals, so they are easier to visually compare. The dashed line is a visual guideline corresponding
to a perfect inverse correlation.

3. Discussion374

3.1. Summary375

In this study, we have attempted to illustrate what the kernel approach is (Figure 2, Figure 3),376

and built an intuition for when we can expect it to be applicable (Figure 4, Figure 5). We further377

developed a mathematical framework to analyze the expected error of the kernel approach and378

showed that it was capable of accurately predicting the observed errors (Figure 5). From equa-379

tion (7) we saw that the error was dependent on both the single-cell kernel heterogeneity and the380

level of correlation between spike trains.381
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Since LFP, EEG, and MEG signals are, at least in the cortex and in the hippocampus, expected382

to primarily originate from synaptic input to populations of pyramidal cells, we built a biophysically383

detailed model population receiving different types of synaptic input, where the individual param-384

eters could be easily adjusted (Figure 6). We then combined these kernels with different types385

of spiking activity with varying levels of firing rates and correlations (Figure 9). This allowed us386

to assess how the error introduced by the population kernel approach was affected by different387

parameter choices for the kernels (Figure 8) and spiking activity (Figure 10).388

The results show that the relative error of using the kernel approach will be lowest for the strong389

signal contributions (e.g., spatially clustered synaptic input and high levels of correlations), and390

highest for the weak signal contributions (e.g., uniformly distributed synaptic input and low levels of391

correlations; Figure 11). This implies that those scenarios where the population kernel prediction392

breaks down are less relevant when considering the total LFP/EEG signal: For cortical scenarios,393

the LFP/EEG is dominated by apical and basal inputs for which the population kernel prediction394

only yields a small relative error. Note also that the same holds for LFP signals created by other395

morphological types of neurons: stellate cells and interneurons lack the asymmetry introduced by396

the apical dendrites in pyramidal cells. Unless asymmetry is introduced by synapse positions, their397

LFP contribution can therefore be assumed to resemble the uniform input scenario shown above.398

The population kernel prediction would break down for populations with symmetric morphologies399

and synapse distributions. However, their overall contribution to the measured LFP can be expected400

to be negligible in the presence of pyramidal-neuron LFP contributions.401

In summary, these results demonstrate that the kernel approach is a promising method for402

calculating LFP, EEG, or MEG signals directly from firing rates.403

3.2. Application to firing rate models404

The kernels considered in this paper correspond to the kernels from a single synaptic pathway.405

Given some prior knowledge or reasonable estimation of synaptic parameters, and how synapses406

are distributed on postsynaptic neurons, approximate kernels can be derived and used also for407

firing rate models.408

To illustrate its applicability, we here choose a simple population rate model of the form [Montbrió
et al., 2015; Schmidt et al., 2018],

τ2ṙ = ∆/π + 2τvr, (8)

τ v̇ = v2 + Jτr + η + I(t)− π2τ2r2, (9)

where r and v are the firing rate and membrane potential, respectively, and τ is the membrane409

time constant. The model is particularly interesting in the context of multi-scale modeling as it410

has been shown to be an exact macroscopic description of the average dynamics of a population411

of all-to-all coupled excitatory quadratic integrate-and-fire (QIF) neurons [Montbrió et al., 2015].412

The other parameters J , η and ∆ are derived from the microscopic definition of the QIF network413

and describe the synaptic weight, and the center and half-width of a Lorentzian distribution of414

heterogeneous, quenched external inputs, respectively. This population rate model and its dynamic415

repertoire have been analyzed extensively over the past years with multiple extensions. These416

include the incorporation of multiple populations to model working memory [Schmidt et al., 2018],417

inhibitory coupling to produce theta-nested gamma oscillations [Segneri et al., 2020], and sparse418

coupling and external fluctuations [Goldobin et al., 2021; Di Volo et al., 2022]. The basic model in419

equation (8) has been shown to produce a non-trivial transient oscillatory behavior upon stimulus-420

induced (I(t)) switching between two steady-state attractors (Figure 12A). Using the population421

kernel prediction such behavior can be modeled in terms of LFP and EEG (Figure 12C), providing422

the basis for comparisons of population rate model dynamics with experimentally obtained LFPs423

and EEGs.424
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For firing-rate models with different populations we can combine different kernels for different425

synaptic pathways. As an example, for an inhibitory-to-excitatory pathway, we could choose a sign-426

inversed (to change from excitatory to inhibitory input currents) version of the “default” case kernel,427

to represent perisomatic inhibitory input. Likewise, for an excitatory-to-excitatory pathway, we could428

use the kernel from uniform synaptic input. All kernels constructed in this study are available online429

(see Methods), and can in principle easily be modified to accommodate different scenarios.430

1 s

10 s⁻¹

A firing rate

4
µV

LFP
kernel

0.4
nV

EEG
kernel

100
µm

10 ms

B kernels

7
mV

1
µV

LFP

EEG

1 s

C signals

Figure 12: Illustration of the kernel approach applied to a rate model. A: Stimulus induced switching
dynamics of rate model described by equation (8), with ∆ = 2, η = −10, J = 15

√
∆, and τ = 100ms

[Schmidt et al., 2018]. The stimulus I(t) is a square pulse with an amplitude of 4, a delay of 1 s, and a
duration of 3 s, resulting in switching dynamics similar to what was observed by Montbrió et al. [2015, Fig.
2(a)] B: Population kernel for the “default” case (basal input) of the setup introduced in Section “Sources and
effect of kernel heterogeneities” (see Figure 6C). C: Transient behavior as observed in the population kernel
LFP and EEG signals, calculated by convolving the population rate in panel A with the kernels in panel B.
Before the convolution with the LFP/EEG kernel, the population rate is transformed from units of hertz to
units of spikes/∆t, and scaled by the considered size of the presynaptic population which was in this case
10,000 [Montbrió et al., 2015].

3.3. Limitations431

An important caveat of the present study is that we considered a fully linear scenario, with432

passive postsynaptic neurons and current-based synapses. This allowed us to treat the case,433

where each single-cell kernel was coupled to its corresponding spike train, as “ground truth”. We434

could then quantify the error of approximating the LFP/EEG directly from the population kernel and435

population firing rate. In assuming linearity, we are however ignoring several potentially important436

factors that may contribute to LFP and EEG signals.437

Firstly, we ignored the extracellular action potentials (EAPs) that in principle precede each438

single-cell kernel. Note that we could in principle easily have included these EAPs in the single-439

cell kernels by choosing a location for each presynaptic neuron, and calculating the EAP on the440

recording electrodes from an action potential in the presynaptic neuron. EAPs can have amplitudes441

of several hundred microvolts if the soma is very close to a recording electrode, but the amplitude442

falls off rapidly with distance [Pettersen and Einevoll, 2008; Hagen et al., 2015; Halnes et al., 2024],443

and we would therefore expect a very high single-cell kernel heterogeneity in these EAP contri-444

butions. We therefore do not expect that the population kernel would give accurate predictions of445

EAP-contributions to LFP/EEG signals. However, at least for large cortical populations, we do not446

expect EAPs to be a major contributor to LFP and EEG signals [Pettersen et al., 2008; Hagen et al.,447

2022; Ness et al., 2022], but the reader should keep in mind that any putative EAP contribution is448

neglected in this analysis.449
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Secondly, in assuming passive postsynaptic neurons, we neglected effects from subthreshold450

active conductances. It has been demonstrated in modeling studies that subthreshold active con-451

ductances can in certain cases be important in shaping the LFP [Ness et al., 2016, 2018], however,452

this effect can be taken into account also in linear models through linearization [Remme and Rinzel,453

2011; Ness et al., 2016, 2018; Hagen et al., 2022]. The effect of other types of non-linearities, such454

as dendritic action potentials, on the validity of the kernel method LFP estimates should be as-455

sessed in future studies.456

Thirdly, we relied on current-based instead of conductance-based synapses. Since conductance-457

based synapses depend on the membrane potential, and change the effective membrane conduc-458

tance of the postsynaptic neurons, the LFP response to synaptic input will for conductance-based459

synapses depends on the ongoing synaptic input to the postsynaptic population. It was previously460

demonstrated by Hagen et al. [2022] that the kernel approach can make accurate LFP predictions461

also for conductance-based synaptic input, by taking into account the “background level” of synaptic462

input that each population was receiving. However, while using conductance-based synapses had463

an important effect on kernel amplitudes [Hagen et al., 2022], it is not expected to have a strong464

effect on single-cell kernel heterogeneity. Therefore, the error analysis presented here is equally465

relevant to models using both current-based and conductance-based synapses for calculating ker-466

nels.467

Also, our analysis here focuses on cortical networks where the LFP/EEG is dominated by inputs468

onto pyramidal neurons and other contributions are negligible. We show that the relative error of469

the population kernel method is in general small for large current dipoles, but sizable for overall470

small signals. It is therefore plausible that the kernel method will work less reliably in other brain471

regions such as basal ganglia, where there are no pyramidal neurons.472

3.4. Inference and approximation of population kernels473

Population kernels were here constructed from the average of all single-cell kernels for a pop-474

ulation of neurons. The latter kernels can be measured in experiments [Swadlow et al., 2002;475

Bereshpolova et al., 2019; Teleńczuk et al., 2017; Teleńczuk et al., 2020a] and simulations [Ha-476

gen et al., 2017; Teleńczuk et al., 2020b], for example using microstimulation of individual neurons.477

This is, however, experimentally not feasible for a large number of neurons and in simulations it is478

computationally expensive. Since variability in single-cell LFP kernels is low in some scenarios, we479

can expect that an approximation of the population kernel based on single-cell kernels of a small480

subpopulation is still valid, and indeed Hagen et al. [2022] demonstrated that population kernels481

could be accurately estimated based on a single biophysically detailed cell simulation.482

A direct way to obtain population kernels is via simultaneous stimulation of the whole population483

of neurons, for example using optogenetic techniques. Also, population kernels can be inferred484

via deconvolution techniques [Mukamel et al., 2005] from given compound extracellular potentials485

and population rates. This procedure, however, relies on the fact that those neurons from which486

spike trains are recorded are those with the dominant single-cell kernels. If other populations of487

neurons from which no spikes are recorded contribute significantly to the extracellular potential,488

then the inferred population kernel is invalid. In the case of spike recordings from multiple popula-489

tions, one can use the MIMO (multiple input - multiple output [Perreault et al., 1999]) scheme for490

deconvolutions of the individual population kernels.491

3.5. Definition of population492

Typically a population is defined via common input statistics and physiological parameters be-493

tween neurons such that output spiking statistics are similar. Here, we need in addition that the494

single-cell spike kernels of neurons in a population are similar. This includes similar postsynaptic495

targets and projection patterns to them as well as passive properties of postsynaptic targets. So the496
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definition of a population is not only based on incoming connection statistics but also on outgoing497

connection statistics. Also what defines a population might dynamically change: if correlations, i.e.,498

spiking statistics, between two populations are large then merging them into one population even if499

they have different kernels would lead to a good population-kernel prediction.500

3.6. Conclusion501

As reviewed in the Introduction, several different approaches to calculate LFP/EEG/MEG signals502

from point-neuron or firing rate models have been suggested [Deco et al., 2008; Sanz-Leon et al.,503

2015; Mazzoni et al., 2015; Teleńczuk et al., 2020a; Glomb et al., 2022; Tesler et al., 2022], but504

quantitative evaluations of the accuracy of these approaches have often been lacking. Here, we505

have presented a thorough analysis of how the kernel method works, and when we can expect506

it to be a good approximation. Our results further establish the kernel approach as a promising507

method for calculating brain signals from large-scale neural simulations, and we hope that the508

kernel approach can therefore be used with more confidence.509

4. Methods510

4.1. Forward modeling511

The calculation of the extracellular potential was done using a well-established forward-modeling512

scheme based on electrostatics with current sources computed via solving the membrane potential513

dynamics of each cell given all its inputs [Halnes et al., 2024]. For the neural simulations we used514

LFPy [Hagen et al., 2018], running on top of NEURON [Carnevale and Hines, 2006].515

4.1.1. Calculating EEG signals516

Current dipole kernels were calculated from the neural simulations using LFPy [Hagen et al.,517

2018], and could in principle be used with arbitrarily simple or detailed head models. EEG signals518

were calculated with the four-sphere head model [Næss et al., 2017] implemented in LFPy.519

4.2. Toy model for spike-LFP kernel520

The spike-LFP kernels from the toy model (Figure 3, Figure 4, Figure 5) were double exponential521

functions (rise time τ1 = 0.2 ms, decay time τ2 = 1 ms), which only varied in amplitude Ai. The522

implementation was equivalent to the “Exp2Syn” mechanism in NEURON, and given by,523

ki(t) = Ai
−e−t/τ1 + e−t/τ2

max(−e−t/τ1 + e−t/τ2)
∀ t > 0. (10)

The mean amplitude was always 1.0V, while the standard deviation of the amplitude was varied as524

detailed in the individual figures. The time resolution of the simulations was 0.1ms.525

4.3. Biophysically detailed simulations526

We used the rat cortical layer 5 pyramidal cell model from Hay et al. [2011], where all active527

conductances were removed to make the cell passive [Ness et al., 2016, 2018]. We used current-528

based synaptic input with exponential decay, and a time resolution of 2−4ms. For calculating single-529

cell spike-LFP kernels, we generated for each presynaptic neuron j, a population of Kout (default530

value: 500) postsynaptic instances of the pyramidal cell model. The cells were aligned with and531

randomly rotated around the z-axis, and the z-positions of the somas were drawn from a capped532

normal distribution (mean: −1270µm, SD: 100µm). The cap was introduced to avoid neurons533

protruding out of the cortex. The somas were uniformly distributed in the xy-plane within a radius534

Rpop (default value: 250µm). Each postsynaptic neuron i had a single synapse with weight Jij535
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drawn from a lognormal distribution, calculated through scipy.stats.lognorm (mean: 0.1nA,536

default s-value: 0.4nA, see scipy.stats.lognorm documentation). The spatial distribution of537

the synapses in the depth direction was drawn from a normal distribution (default syn z mean:538

−1270µm, default syn z SD: 100µm). The synaptic time constants τsyn were drawn from a normal539

distribution (mean: 1ms, default SD: 0.2ms), as were synaptic delays (syn delay mean: 1ms, default540

syn delay SD: 0.2ms). The default values of the parameters as well as the different variations tested541

in this study are listed in Table 1.

default apical uniform
small
radius

large
radius small Kout large Kout

similar
synapses

variable
synapses

narrow
input

region

broad
input

region
Rpop 250µm 125µm 500µm
Kout 500 250 1000
syn z SD 100µm 108µm 50µm 200µm
syn z mean −1270µm −200µm −600µm
τsyn SD 0.20ms 0.10ms 0.40ms
syn delay SD 0.20ms 0.10ms 0.40ms
J s-value 0.40nA 0.20nA 0.80nA

Table 1: Parameter combinations used for calculating the kernels, where the names of the columns corre-
spond to the parameter combinations tested in Figure 8 and Figure 11. Blank spaces indicate no change from
the default values, and only parameters that are varied between simulations are included.

542

4.4. Synthetic spike-trains with correlations543

Synthetic spike trains with varying levels of correlations and firing rates were generated through544

Multiple Interaction Processes (MIP) [Kuhn et al., 2003]. Here, a “mother spike train” was first545

generated with the same firing rate as the target spike trains. The spike times were generated546

through a homogeneous Poisson process using Elephant [Denker et al., 2018]. For each “child547

spike train”, a fraction f of the spikes where randomly selected from the mother spike train, while548

the remaining spikes were generated through homogeneous Poisson processes. Consequently, f549

varies between 0 and 1, and f = 0 corresponds to uncorrelated homogeneous Poisson processes,550

while f = 1 corresponds to fully correlated (identical) spike trains. Since each spike is copied with551

probability f2 into two child spike trains, the correlation coefficient of the latter is given by c = f2
552

(for details see Appendix B).553

4.5. Error measures554

We define the absolute squared error of the population kernel signal Ṽ (r, t) in approximating555

the ground truth signal V (r, t) as E2(r) = Var
[
V (r, t)− Ṽ (r, t)

]
, where Var [...] denotes the556

variance across time, computed separately for each electrode position r. The relative squared557

error is defined as E2
rel(r) = E2(r)/maxr(Var[V (r, t)]), that is, the absolute squared error at each558

electrode, normalized by the maximum (over the electrodes) variance of the ground truth signal.559

Note that the error is normalized by the largest value of the ground truth signal variance because the560

ground truth signal will often have electrodes with very near-zero signal amplitudes, and therefore561

very high, but irrelevant relative errors. In the case of the toy model (Equation (10)) that is agnostic562

to spatial positions, the normalization does not involve a maximum over the electrodes.563

4.6. Firing rates564

Firing rates are constructed from spike trains by counting the number of spikes within time steps565

of length ∆t, and normalizing by ∆t. For kernels generated with the toy model (Figures 3-5), the566

time step duration is ∆t = 0.1ms, while for the simulations with biophysically detailed kernels567

(Figures 6-12), it is ∆t = 2−4 ms.568
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4.7. Point-neuron network simulation569

The point-neuron network model was a random balanced network with delta synapses [Brunel,570

2000], based on the brunel_delta_nest.py example that comes with NEST. We used NEST571

3.6 [Villamar et al., 2023], with the same network parameters and network states as Brunel [2000],572

that is, we extracted spikes from an asynchronous irregular (AI) regime (g = 5, η = 2.0, J =573

0.1) [Brunel, 2000][Figure 8C], and a slow synchronous irregular (SI) regime (g = 4.5, η = 0.9,574

J = 0.1) [Brunel, 2000][Figure 8D]. The time resolution was 0.1 ms.575

4.8. Mathematical derivation of error estimate576

In simulations, we measure the squared error577

E2(r) = Var
[
V (r, t)− Ṽ (r, t)

]
=

〈(
V (r, t)− Ṽ (r, t)

)2
〉

t

−
〈(

V (r, t)− Ṽ (r, t)
)〉2

t

of the population kernel method as the variance of the difference signal V (r, t) − Ṽ (r, t) across578

time. By definition, due to the time average ⟨·⟩, the error depends on the statistics of spike trains579

s. In addition, in principle, it depends on all details of the single-cell spike-LFP kernels k. Yet,580

for networks of biologically realistic size, the LFP is made up of many contributions, such that the581

squared error E2(r) will not vary too much between different statistically equivalent realizations of582

single-cell kernels. Therefore, the expectation
〈
E2(r)

〉
k

across different realizations of single-cell583

kernels k can be assumed to be informative about the error E2(r) for one particular realization.584

The expected squared error is

〈
E2(r)

〉
k
=

〈〈(
V (r, t)− Ṽ (r, t)

)2
〉

t

−
〈(

V (r, t)− Ṽ (r, t)
)〉2

t

〉
k

=

〈(
[V (r, t)− ⟨V (r, t)⟩t]−

[
Ṽ (r, t)−

〈
Ṽ (r, t)

〉
t

])2
〉

t,k

(11)

Inserting the definition of the ground truth LFP (equation (3)) and the population-kernel approx-585

imation (equation (6)) yields the error expression (equation (7)) of the main text (for details see586

Appendix A).587

For the prediction of the relative squared error, we divide the error by the variance of the ground588

truth LFP589

Var [V (r, t)] =
〈
[V (r, t)− ⟨V (r, t)⟩t]

2
〉
t
. (12)

On expectation, the latter time average can be calculated analogously to the error (for details see
Appendix A). This allows us to obtain some intuition on the expected relative squared error

〈
E2

rel(r)
〉
k
=

(Npre − 1)
∫
dτ (Ak(r, τ)− Ck(r, τ)) (As(τ)− Cs(τ))

Npre
∫
dτ Ak(r, τ)As(τ) +Npre(Npre − 1)

∫
dτ Ck(r, τ)Cs(τ)

(13)

in relation to features of single-cell kernels. To do so, we employ equation (4) and write the single-
cell kernel in terms of individual extracellular potential responses hij(r, t) = ξijJijχij(r, t), where
we explicitly split the synaptic strength Jij and the adjacency values ξij ∈ {0, 1} from the impulse
response χij(r, t). The latter characterizes the LFP response, measured at time t and location r, to
a unit input arriving at the synapse between neurons i and j. The single-cell spike-LFP correlations
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then read

Ak(r, τ) =

∫
dτ ′ ⟨ki(r, τ ′)ki(r, τ ′ + τ)⟩k

≈ Kout

(
Var(J) +Mean(J)2

)
Aχ(r, τ) +K2

outMean(J)2χ̄2(r, τ) ,

Ck(r, τ) =

∫
dτ ′ ⟨ki(r, τ ′)kj(r, τ ′ + τ)⟩k

≈ K2
outMean(J)2χ̄2(r, τ) ,

Ak(r, τ)− Ck(r, τ) ≈ Kout

(
Var(J) +Mean(J)2

)
Aχ(r, τ) ,

with Mean(J) and Var(J) denoting the mean and variance of synaptic weights, impulse-response590

statistics χ̄2(r, τ) and Aχ(r, τ), and Kout the outdegree of presynaptic neurons (see Appendix A).591

Interestingly, the error E ∼
√
Ak − Ck (square root of numerator in equation (13)) - due to can-592

cellations between Ak and Ck - scales as O(
√
Kout) (Figure 8B2), while the signal standard de-593

viation ∼
√
...Ak + ...Ck (square root of denominator in equation (13)) scales as O(Kout) (Fig-594

ure 8B1), such that the relative error decreases with postsynaptic population size as O(1/
√
Kout)595

(Figure 8B3). Furthermore, the signal standard deviation is roughly independent of the variability in596

synaptic strengths (Figure 8C1). This variability Var(J) only enters in the term of Ak that is propor-597

tional to Kout and thus subleading compared to the other terms in Ak and Ck that are proportional598

to K2
out. In the error these terms proportional to K2

out exactly cancel, such that the error increases599

with larger variability in synaptic strengths (Figure 8C2). The closer the different synaptic locations600

k and l are (see narrow vs broad input region or apical/default vs uniform), the larger the product of601

different impulse responses χki(r, τ
′)χli(r, τ

′+τ). Therefore, the signal standard deviation, which602

contains products of different impulse responses in χ̄2(r, τ) (see Appendix A), grows when synap-603

tic locations become more similar (Figure 8A1,D1). In contrast, the error only depends on Aχ(r, τ),604

which in turn only depends on products of the same impulse responses (see Appendix A). There-605

fore, the error is less sensitive to the width of the input region (Figure 8D2). Still, both impulse606

response statistics χ̄2(r, τ) and Aχ(r, τ) depend strongly on the type of input region, leading to607

a strong dependence of the signal standard deviation and error on the input region (Figure 8A2).608

Also, both terms increase the smaller the radius of the population, because LFP-generating sources609

are closer to the recording electrode. Therefore, both the signal standard deviation (Figure 8E1)610

and the error (Figure 8E2) increase with smaller population radius.611

4.9. Code availability612

Simulation code to reproduce all figures in this paper, as well as all the simulated kernels are613

freely available from https://github.com/torbjone/kernel_validity.git.614
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Appendix A. Derivation of error formula624

Here we provide details for the derivation of the expected squared error between the ground
truth LFP and the population kernel approximation. Inserting the definitions

V (r, t) =

Npre∑
j=1

(kj(r, ·) ∗ sj) (t)

=

Npre∑
j=1

∫
dτ kj(r, τ)sj(t− τ) (A.1)

and

Ṽ (r, t) =

Npre∑
j=1

(
k(r, ·) ∗ sj

)
(t)

=
1

Npre

Npre∑
i,j=1

∫
dτ ki(r, τ)sj(t− τ) (A.2)

into equation (11), we obtain625

〈
E2(r)

〉
k
=

〈Npre∑
j=1

∫
dτ kj(r, τ) [sj(t− τ)− νj ]−

1

Npre

Npre∑
i,j=1

∫
dτ ki(r, τ) [sj(t− τ)− νj ]

2〉
t,k

with firing rates νj = ⟨sj(t− τ)⟩t. Multiplying out the square then yields

〈
E2(r)

〉
k
=

Npre∑
j,l=1

∫
dτ

∫
dτ ′

〈
kj(r, τ)kl(r, τ

′)− 2

Npre

Npre∑
i=1

ki(r, τ)kl(r, τ
′) +

1

N2
pre

Npre∑
i,k=1

ki(r, τ)kk(r, τ
′)

〉
k

× ⟨[sj(t− τ)− νj ] [sl(t− τ ′)− νl]⟩t .

The averages over time ⟨·⟩t yield the spike-train covariances cjl(τ ′−τ) = ⟨[sj(t− τ)− νj ] [sl(t− τ ′)− νl]⟩t,
which for stationary spike-train statistics only depends on the relative time between spike trains. For
the average over single-cell spike-LFP kernels ⟨·⟩k one splits the sum

∑
jl into a sum over equal

indices
∑

j and a sum over unequal indices
∑

j ̸=l to obtain after some simplifications〈
E2(r)

〉
k
= (Npre − 1)

∫
dτ (Ak(r, τ)− Ck(r, τ)) (As(τ)− Cs(τ))

with population-averaged spike-train autocovariance As(τ) =
1

Npre

∑Npre
j=1 ⟨[sj(t+ τ)− νj ] [sj(t)− νj ]⟩t,

population-averaged spike-train cross-covariance Cs(τ) =
1

Npre(Npre−1)

∑Npre

j ̸=l ⟨[sj(t+ τ)− νj ] [sl(t)− νl]⟩t,
single-cell spike-LFP kernel autocorrelation Ak(r, τ) =

∫
dτ ′ ⟨ki(r, τ ′)ki(r, τ ′ + τ)⟩k, and single-

cell spike-LFP kernel cross-correlation Ck(r, τ) =
∫
dτ ′ ⟨ki(r, τ ′)kj(r, τ ′ + τ)⟩k for i ̸= j. In

practice, to calculate Ak and Ck, one replaces the expectation value over single-cell spike-LFP
kernel statistics by an empirical average that can be measured

Ak(r, τ) =
1

Npre

Npre∑
i=1

∫
dτ ′ki(r, τ

′)ki(r, τ
′ + τ) ,

Ck(r, τ) =
1

Npre(Npre − 1)

Npre∑
i ̸=j

∫
dτ ′ki(r, τ

′)kj(r, τ
′ + τ) .
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Analogous to the calculation above, the variance of the ground truth LFP can be calculated on
expectation〈〈

[V (r, t)− ⟨V (r, t)⟩t]
2
〉
t

〉
k
= Npre

∫
dτ Ak(r, τ)As(τ) +Npre(Npre − 1)

∫
dτ Ck(r, τ)Cs(τ) .

(A.3)

By expressing Ak and Ck in terms of impulse responses (equation (4)), we obtain

Ak(r, τ) =

∫
dτ ′ ⟨ki(r, τ ′)ki(r, τ ′ + τ)⟩k

=

Npost∑
m,n=1

∫
dτ ′ ⟨hmi(r, τ

′)hni(r, τ
′ + τ)⟩h

=

Kout∑
m,n=1

∫
dτ ′ ⟨JmiJni⟩J ⟨χmi(r, τ

′)χni(r, τ
′ + τ)⟩χ

=

Kout∑
m=1

∫
dτ ′

〈
J2
mi

〉
J
⟨χmi(r, τ

′)χmi(r, τ
′ + τ)⟩χ

+

Kout∑
m̸=n

∫
dτ ′ ⟨Jmi⟩J ⟨Jni⟩J ⟨χmi(r, τ

′)⟩χ ⟨χni(r, τ
′ + τ)⟩χ

≈ Kout

(
Var(J) +Mean(J)2

)
Aχ(r, τ) +K2

outMean(J)2χ̄2(r, τ) ,

Ck(r, τ) =

∫
dτ ′ ⟨ki(r, τ ′)kj(r, τ ′ + τ)⟩k

=

∫
dτ ′ ⟨ki(r, τ ′)⟩k ⟨kj(r, τ

′ + τ)⟩k

≈ K2
outMean(J)2χ̄2(r, τ)

Ak(r, τ)− Ck(r, τ) ≈ Kout

(
Var(J) +Mean(J)2

)
Aχ(r, τ) ,

with Mean(J) = ⟨Jki⟩J and Var(J) =
〈
J2
ki

〉
J
− ⟨Jki⟩2J the mean and variance of synaptic weights,

Kout the outdegree of presynaptic neurons, and impulse-response statistics

χ̄2(r, τ) =

∫
dτ ′

1

Kout

Kout∑
m=1

⟨χmi(r, τ
′)⟩χ

1

Kout

Kout∑
n=1

⟨χni(r, τ
′ + τ)⟩χ

≈
∫

dτ ′
1

Kout

Kout∑
m=1

1

Npre

Npre∑
i=1

χmi(r, τ
′)

1

Kout

Kout∑
n=1

1

Npre

Npre∑
i=1

χni(r, τ
′ + τ)

Aχ(r, τ) =

∫
dτ ′

1

Kout

Kout∑
m=1

⟨χmi(r, τ
′)χmi(r, τ

′ + τ)⟩χ

≈
∫

dτ ′
1

Kout

Kout∑
m=1

1

Npre

Npre∑
i=1

χmi(r, τ
′)χmi(r, τ

′ + τ) .
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Appendix B. MIP spike train generation and correlations626

Let’s consider a homogenous Poisson spike train m(t) (“mother spike train“) of rate ν und in-627

dependent Poisson spike trains Si(t) of rate (1 − f)ν. We define child spike trains si(t) as a628

superposition of Si(t) and mi(t), where mi(t) is a Poisson process of rate fν that consists of a629

randomly chosen fraction f of spikes from the mother spike train m(t). By definition, each child630

spike train is then a Poisson process with rate ν and auto-covariance As(τ) = νδ(τ). Since each631

spike of the mother spike train is selected with probability f2 to be copied into mi(t) and mj(t), the632

child spike trains si and sj share a common Poisson spike train of rate f2ν. The cross-covariance633

between child spike trains is therefore Cs(τ) = f2νδ(τ), and the correlation coefficient is c = f2.634

Since both auto- and cross-covariances of MIP spike trains are proportional to the firing rate,635

the latter exactly cancels in the relative error of the population kernel approximation (equation (13)).636

The absolute error is given by the difference As(τ) − Cs(τ) = ν(1 − c)δ(τ) and therefore rather637

insensitive to correlations c that are small (Figure 5B, Figure 10B). For the signal amplitude, cross-638

covariances are, however, amplified by a factor Npre (equation (A.3)), leading to a strong depen-639

dence on c of the signal amplitude (Figure 5A, Figure 10A) and the relative error (Figure 5C, Fig-640

ure 10C).641

Appendix C. All kernels642
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Figure C.13: All tested LFP kernels and the resulting LFP signals. The LFP kernels for all tested param-
eter combinations in Table 1 (top row), and the resulting LFP signals (bottom row). The spike trains were from
an uncorrelated Poisson process with a firing rate of 10 s−1.
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