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HIGHLIGHTS GRAPHICAL ABSTRACT

e XGBoost machine learning model suit-
able for imputing missing height data.
e 3-D building data and OpenStreetMap
serve as data base.

e Complete nation-wide building footprint
and height dataset for Germany.

o Validation shows high overall accuracy
with region-dependent error.
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ARTICLE INFO ABSTRACT

Building geometry data is crucial for detailed, spatially-explicit analyses of the building stock in energy systems
analysis and beyond. Despite the existence of diverse datasets and methods, a standardized and validated
approach for creating a nation-wide unified and complete dataset of German building heights is not yet available.
This study develops and validates such a methodology, combining different data sources for building footprints
and heights and filling gaps in height data using an XGBoost machine learning algorithm. The XGBoost model
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ﬁeﬁ?;fieammg achieves a mean absolute error of 1.78 m at the national level and between 1.52 m and 3.47 m at the federal state
XGBoost level. The goal is proving the applicability of the methodology at a large scale and creating a useful dataset. The
Building height resulting dataset is thoroughly evaluated on a building-by-building level and spatially resolved statistics on the
Building footprint quality of the dataset are reported. This detailed validation found that the building number and footprint area of
3-D ;Uildiﬂg data German building stock is 90.31 % and 94.84 % correct, respectively, and the building height accuracy is 0.59 m
Geodata

at the national level. However, errors are not homogeneous across Germany and further research is needed into
the impact of including additional datasets, especially for regions and building types with lower accuracies. This
study proves that the chosen methodology is useful for generating a building height dataset and the workflow,
with some modifications for regional data availability, can be transferred to other countries. The generated
building dataset for Germany constitutes a valuable data basis for the research community in fields such as
energy research, urban planning and building decarbonization policy development.
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1. Introduction

Buildings contribute significantly to energy consumption and
greenhouse gas emissions in the European Union, with shares of 40 %
and 36 %, respectively [1]. In order to analyze the feasibility and effi-
cacy of decarbonization measures, detailed knowledge of the building
stock is required. When aiming for bottom-up analyses, especially
spatially-explicit ones, data on individual building levels is required.
However, although there has been a surge in open data initiatives and
datasets on building attributes have been published, this data is often
fragmented and no standardized methodology for combining it has been
established.

Building footprint and height are the key attributes for describing a
building’s geometry and are crucial for estimating its heating energy
demand. Building geometry directly affects, e.g., the wall areas and
thereby heat transmission losses of the building envelope. The geometry
is also a valuable source of information for deriving other building
characteristics. Energy consumption, for example, is often given per
square meter of living area of a building, which can be approximated
when knowing the footprint area and height. Other use cases include the
scaling of building archetypes, e.g., from the Tabula typology [2], to
better match the actual buildings characteristics, or estimating the
number of apartments per building. Information on building geometry
can also be a valuable feature in machine learning tasks, e.g., for clas-
sifying building types [3]. Height information therefore is of utmost
importance when estimating the energy demand of buildings on a
per-building level as it allows, for example, to derive the heated volume
of a building, the area of its thermal envelope, and the conditioned living
area. These characteristics could not be derived from a building’s foot-
print alone.

Therefore, the existence of complete and validated building datasets
on the (inter-)national scales is crucial for energy related analyses and
the lack thereof has been noted, e.g., by Bandam et al. [3]. Building
height data is available from different sources, in different formats and
qualities and can be combined and harmonized. However, the resulting
datasets still contain missing data, an issue that has to be addressed by
developing novel approaches. Whereas various approaches exist and
have been tested for some regions, consolidating, adapting and applying
these approaches on larger scales and validating the resulting dataset
has not yet been done. The objective of this paper is to develop and
evaluate a methodology inspired by previous work in the field of ma-
chine learning for creating and, most importantly, validating a unified
and complete nation-wide building height dataset in order to fill that
gap and facilitate further research in energy system analysis and beyond.
Out study therefore lies at the intersection of artificial intelligence and
energy analyses, with the former used as a methodological basis and the
latter being the main beneficiary of the generated dataset.

The German building stock serves as a case study for this paper as it
has the highest final energy consumption of the EU countries, according
to the EU building stock observatory [4], and is therefore of particular
importance for the energy transition. However, this study is also rele-
vant for other countries as it presents a generalized workflow. While the
presented implementation makes full use of the height data available in
Germany and may therefore not be directly transferable to regions with
pronounced data scarcity, it can be adapted to other regions using
OpenStreetMap data and additional global and local data sets. The
overall goal of our study is not the comparison of various algorithms but
proving the applicability of the proposed methodology and creating a
useful dataset for Germany.

The article is organized as follows: Section 2 outlines the previous
research in the field of building height assignment and presents the
applied methodologies and results of existing studies. Section 3 de-
scribes the methodology used in this study, including the basic datasets,
processing, machine learning, and validation steps. The results of the
machine learning model training and of the nation-wide validation are
presented in Section 4. These results and the benefits and limitations of
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the applied methodology are discussed in Section 5. Finally, Section 6
concludes the study and provides an outlook for further research.

2. Previous research

Milojevic-Dupont et al. [5] present a unified dataset of building
footprints for Germany. However, the height data they provide is
incomplete and a clear description of how building heights are derived is
missing. Furthermore, the dataset of building footprints and building
heights provided by Milojevic-Dupont et al. [5] only includes the heights
reported in open governmental datasets or OpenStreetMap, resulting in
a coverage of 66 % of buildings with height information in Germany.
However, they do not conduct any further steps for assigning heights to
buildings.

Different approaches for measuring and deriving building height
information can be found in the existing literature (see Table 1). Where
available, remote sensing data has been used to calculate building
heights. Light Detection and Ranging (LiDAR) data is especially useful
for this objective, because of the high accuracy of the generated spatial
coordinates of surface points and it is available in many European areas
[6]. Saraf et al. [7] assess the accuracy of 3-D building extraction from
LiDAR data and conclude that the determined heights are within a
tolerance of 1 m. Wu et al. [8] and Bonczak et al. [9] use LiDAR data to
assign heights to buildings in the United Kingdom and New York City,
United States, respectively. Meanwhile, Teo [10] constructs LoD1
buildings, i.e., 3-D buildings in a simplified block shape with flat roofs,
from LiDAR data using a fully convolutional network and extract both
building footprints and heights from the point clouds. Park and Guld-
mann [11] address the issue of identifying LiDAR points belonging to
rooftops and propose a random forest machine learning algorithm for
the classification. As an alternative to LiDAR data, satellite data avail-
able at a larger geographical scale can be used. The European Envi-
ronment Agency [12] provides a 10 m resolution dataset of building
height for major urban areas in the European Union, based on a com-
bination of satellite and LiDAR data. In Germany, data is available for 97
cities. Frantz et al. [13] generate a raster dataset of building heights with
a resolution of 10 m for all of Germany using satellite imagery from
Sentinel-1A/B and Sentinel-2A/B time series. Although they limit their
dataset to residential areas by using the European Settlement Map, they
do not provide a building dataset assigned with the respective heights.
Similarly, Li et al. [14] use Sentinel-1 data for estimating building
heights in the United States within the 500 m grid, achieving a root
mean square (RMSE) error of 1.5 m. Che et al. [15] use a combination of
satellite data and other datasets to train a random forest model for
predicting height at the building level and report an RMSE of 3.35 m.
Cao et al. [16] use multi-spectral and multi-view images of three satel-
lites to train a deep learning network for cities in China and achieve an
RMSE error of 6.3 m. Instead of satellite data, Liu et al. [17] use single
aerial images in combination with a convolutional-deconvolutional
deep neural network architecture to generate a digital surface model and
Pang et al. [18] use street view images with the Differentiable Volu-
metric Renderer deep learning architecture. The Microsoft Global-
MLBuildingFootprint dataset [19] includes heights derived by using a
neural network trained on imagery and height measurements, however,
it has some gaps, e.g., the city of Magdeburg is currently not covered.

In an effort to address the lack of elevation measurements in some
areas, machine learning without the use of elevation data has been the
subject of multiple studies. Biljecki et al. [20] provide a review on the
methods applied and show that the three main categories for approxi-
mating building heights are the number of floors, local building height
regulations, and the analysis of shadows in the imagery cast by build-
ings. They did not find metrics for describing the quality of height
predictions using the number of floors, but report accuracies of 3-13 m
for studies that estimate heights based on shadows in imagery. The
authors also propose their own approach for determining building
heights using a random forest algorithm. Support vector machines and
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Table 1

Related studies in the field of building height estimation with the main data source, region and accuracy. The "open result dataset" column indicates whether the result

dataset is openly available (only datasets explicitly referenced from the article are considered).
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Study Main data source/ approach Region Accuracy Open result
dataset

Saraf et al. [7] LiDAR data Malaysia (selected buildings) >96 % No

Wu et al. [8], LiDAR data + OS MasterMap United Kingdom MAE: 0.3 floors No

Teo [10] LiDAR data + fully convolutional network Taipei City, Taiwan NA No

Park and Guldmann [11] LiDAR data + random forest model City of Columbus and Franklin MAE: 0.48 m; RMSE: 1.35 m No

European Environment Agency
[12]

Bonczak et al. [9]

Frantz et al. [13]

Lietal [14]

Microsoft GlobalMLBuilding-
Footprint dataset [19]

Cao et al. [16]

Pang et al. [18]

Wu et al. [23]

Che et al. [15]

Biljecki et al. [20]

Bernard et al. [21]

Milojevic-Dupont et al. [22]

LiDAR data, satellite imagery
LiDAR

Satellite imagery + regression model

Satellite imagery
Satellite imagery + neural network

Satellite imagery + deep learning M°Net
Street view imagery

Satellite imagery, building features and
proximity features + regression model
Satellite imagery, geometry features +
random forest model

2-D building data (cadaster) + random forest
model

2-D building data (OpenStreetMap) +
random forest model

2-D building data (OpenStreetMap/ cadaster)
+ XGBoost

Country, Ohio, United States
Europe (selected cities and urban
centers)

New York City, United States

Germany

United States (seven cities)
Mainly United States, Europe,
Australia

China (42 cities)

Helsinki, Finland

Shenzhen City, China
United States

Rotterdam and Leeuwarden,
Netherlands

France (14 communes)

France, Italy, Netherlands,
Germany (selected regions)

3m

Volume median percentage error:

0.6 % (LoD1), -7.2 % (LoD2)
Frequency-weighted RMSE:
2.92-3.55 m;

RMSE: 3.83 - 8.14 m

RMSE: 1.5 m at 500 m grid
NA

RMSE: 6.3 m

Volume estimation: -9.198 % - -
36.167 %

RMSE: 7.4 m

RMSE: 3.35m

MAE: 0.8 m

RMSE: 2.05 -2.2 m

MAE: 1.47 m

Yes, 10 m grid
No

Yes, 10 m grid
No

Yes, building-
level with gaps

No
No

No
No

No

multiple linear regressions were excluded due to worse performance.
2-D building data and additional attributes from the cadaster, e.g.,
population density, average household size, and average income were
included as features. A model combining the number of floors, age, and
net internal area performed best, with an accuracy of 0.8 m for the city
of Rotterdam. Using a combination of the three geometric features of
footprint area, normalized perimeter index and number of neighbors, a
mean absolute error of 1.8 m was achieved. The model was also shown
to be applicable to other cities in the Netherlands. Bernard et al. [21] use
a random forest model for predicting building heights in France and
report a RMSE of 2.05 - 2.2 m. Milojevic-Dupont et al. [22] use a
gradient boosting algorithm to predict building heights based on a va-
riety of urban form features such as building geometry, street networks,
and blocks. They found that random forest and linear regression had a
lower performance. They focus on cities in France, Italy, the
Netherlands, and Germany and analyze the transferability of the trained
model by performing cross-country validation. They achieved accu-
racies of between 0.91 and 1.65 m in their study areas in Italy, France
and the Netherlands and show the potential for cross-country general-
ization. Wu et al. [23] compare the performance of extreme gradient
boosting, random forest and artificial neural network regression models
and find that extreme gradient boosting outperforms the other ap-
proaches and achieves an RMSE of 7.4 m. This is in line with Grinsztajn
et al. [24], who demonstrate that XGBoost outperforms deep learning
models, such as Resnet and the transformer models FT Transformer and
SAINT on regression tasks for large datasets with numerical features.
They conclude that tree-based models are state-of-the-art and mention
the advantage of a higher training speed.

In summary, there have been successful attempts using both eleva-
tion measurements and machine learning to generate building footprint
and height datasets. However, as shown in Table 1, the existing ap-
proaches have either not been applied to all of Germany or the resulting
datasets are incomplete, not validated or not available at the individual-
building level. Therefore, developing an approach for combining exist-
ing datasets and filling gaps using machine learning to generate a uni-
fied, easily usable, complete, and, importantly, validated nation-wide

dataset containing building footprints and building heights is, to our
knowledge, still missing. Describing this methodology and validating
the generated data is therefore the goal of this study.

3. Methodology and data

The methodology for generating a unified building footprint and
height dataset is based on three pillars: the raw building data as a pri-
mary input source, additional height datasets as secondary inputs, and
lastly machine learning to fill remaining gaps in the dataset (see Fig. 1).
The following sections describe the acquisition of the basic building data
(Section 3.1) and the extraction of footprint and height information from
it and from additional datasets (Section 3.2), and the methodology for
training and using a machine learning model to impute missing data
(Section 3.3). In a last step, the dataset is validated against official 3-D
building data.

3.1. Basic building data

In a similar approach to that of Milojevic-Dupont et al. [5], basic
building data for Germany was extracted where possible from open 3-D
building governmental datasets downloaded from the respective open
geodata portals of the federal states, and from OpenStreetMap for all
other states. Open governmental data is available and was downloaded
for the German federal states Bavaria (2022) [25], Berlin (2013) [26],
Brandenburg (2022) [27], Hamburg (2021) [28], Hesse (2021) [29],
Lower Saxony (2021) [30], North Rhine-Westphalia (2021) [31], Sax-
ony (2022) [32], Saxony-Anhalt (2021) [33], and Thuringia (2021)
[34]. The year in parenthesis specifies the reference year of the data. All
datasets were downloaded between April 2022 and January 2023. The
early reference year in the case of Berlin is due to its discontinuation of
publishing building-level 3-D data. The included 3-D building datasets
are in Level of Detail 2 (LoD2), i.e., buildings are represented by
simplified blocks, including roof shapes, but with smaller scale geome-
tries such as chimneys or windows neglected; the format follows the
citygml standard [35]. Buildings are described through a set of
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(1) Raw building data

(1) Additional height dataset(s)
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Fig. 1. Illustration of the three pillars of the data processing workflow (OSM=OpenStreetMap, LoD2=3-D building data in level of detail 2, i.e., including stan-

dardized roof shapes).

attributes, including, e.g., ID, function type and height, and through the
coordinates of their surfaces. One building can be represented as either a
single block or multiple sections that make up the building. For
Baden-Wuerttemberg, Bremen, Mecklenburg-Western Pomerania,
Rhineland-Palatinate, the Saarland, and Schleswig-Holstein, Open-
StreetMap [36] data version 230315 in the osm.pbf format was down-
loaded from the geofabrik download server [37]. OpenStreetMap data
for buildings combines the 2D geometric data with additional data in the
form of key value pairs, providing information on the building type or its
height. Data from both sources was then processed to extract building
footprints and height data, as described in the following sections.

3.2. Building footprint and height extraction

The open governmental datasets are unpacked, and all ground sur-
faces, i.e., the boundary between the building and the ground, of each 3-
D building, including its building parts, are extracted. They are merged
into one 2-D building polygon using the unary union function provided
by shapely, which returns the union of the polygons [38]. Heights are
extracted from the “measuredHeight” attribute, which provides the
height difference between the ground and the ridge line of the building
or building part. In the case of multiple building parts with this infor-
mation, heights are combined by calculating the area-weighted height
hyuiding of all building part heights hyyiding_pare according to Equation 1,
with Apyiiding_pere being the footprint area of the building part. Building
parts with a height below 2 m are not considered when calculating the
weighted average height as they are assumed to be invalid.

Abuildingpare

e — (@]
> Abuildingyare

Rbuitding = Z Rbuitdingyare

Using the OpenStreetMap data, all buildings were filtered using
osmosis [39] to reduce the file size and resulting memory consumption.
Subsequently, buildings were extracted for further processing using the
get buildings function from Pyrosm [40]. The geometry polygons were
used as building footprints without modifications. The building height,
which in accordance with the description in the OpenStreetMapWiki
should provide the maximum height of the building from the ground
surface to the top of the roof [41], was provided for some buildings in
the “height” tag. Building heights provided in the height tag were
cleaned by removing invalid characters and values that do not conform
to the floating-point number format. All buildings, both from open
governmental data and from OpenStreetMap data with footprint areas
below 1 m? or a height below 2 m, were deemed invalid and removed
from the dataset.

As most of the buildings from OpenStreetMap do not contain height
information, additional data sources were included for the states for
which no open governmental 3-D building data is available. Due to a
relatively high spatial resolution of 10 m and a coverage of the major
cities in Germany, Urban Atlas Building Height [12] was deemed a
suitable dataset for increasing the share of building heights in our data.
This step is included in order to derive as many buildings’ heights as
possible from the elevation measurements, assuming that they are more
accurate and reliable than machine learning algorithms without eleva-
tion data. All datasets for German cities from [12] were downloaded.
Heights were then assigned to all buildings that could not be assigned a
height in the previous step. This was undertaken by calculating the mean
value of all raster cells of [12], touching the building footprint polygons
extracted from OpenStreetMap using the rasterstats package [42].
Height values above 368 m, which is the height of the highest building in
Germany (the TV tower in Berlin), were disregarded from all input
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datasets.

3.3. Machine learning approach

Following the two previous steps, 16 % of buildings still do not
contain building heights (cf. Section 4.1). To fill the missing values, a
machine learning model was trained. As mentioned in Section 2, Biljecki
et al. [20] find that random forests outperform support vector machines
and multiple linear regression. Milojevic-Dupont et al. [22] and Wu
et al. [23] show that gradient boosting performed as least as well as
random forest or better. Wu et al. [23] also confirm the superiority of
extreme gradient boosting over a deep learning model as found by
Grinsztajn et al. [24].

In order to examine the validity of these findings for our dataset, we
performed experiments on a subset of the full training dataset, con-
taining a random 10 % of the data, with an 80:20 train-test split ratio.
We trained the tree-based models RandomForestRegressor and XGBoos-
tRegressor, the nearest neighbor model KNeighborsRegressor, the linear
model LinearRegression, the support vector machine LinearSVR, and the
neural network MLPRegressor from the sklearn package [43]. A ran-
domized grid-search hyperparameter optimization was conducted,
testing a maximum of 10 random combinations from the hyper-
parameter search spaces of the respective models presented in Table 2,
including a 3-fold cross validation. We then compared the performance
metrics and fit times of the models with the best hyperparameter
combinations.

Due to its good performance in regression tasks, and a high compu-
tational efficiency for training on large datasets, found in literature and
confirmed in our experiments, as will be described in more detail in
Section 4.1, we chose extreme gradient boosting for our study. The
implementation available as “XGBRegressor” in the sklearn package [43]
was used.

A share of 80 % of all buildings assigned heights using the infor-
mation in the basic building data or that provided by the additional
dataset served as training data. The remaining 20 % were used in equal
shares for the evaluation of early stopping in hyperparameter optimi-
zation and for testing of the final model (see Fig. 2). Data was split in a
stratified fashion to ensure that buildings from all federal states (NUTS-1
regions) were included in all three partitions.

The feature set was based on the geometric features employed by
Biljecki et al. [20], who use the footprint area, normalized perimeter
index, and the number of neighboring buildings in a 30 m radius. We

Table 2
Hyperparameter search space for experiments on a subset of the data.

Model Hyperparameter search space

RandomForestRegressor n_estimators: [50, 100, 500],
max_depth: [5, 10, 15],
min_samples_split: [2, 3, 4],
min_samples_leaf: [1, 5, 10],
max_features: [0.8, 1.0]
n_estimators: [500, 1000],
max_depth: [5, 10, 15],

eta: [0.05, 0.1, 0.3],
subsample: [0.5, 1],
min_child_weight: [1,10,50,1001,
gamma: [0, 1, 5]

C: [0.1, 1, 101,

epsilon: [0, 0.5, 1]

No hyperparameter optimization

XGBoostRegressor

LinearSVR

LinearRegression

KNeighborsRegressor n_neighbors: [1, 3, 5, 81,
leaf size: [10, 20, 30, 40],
p: [1, 2]
MLPRegressor hidden_layer sizes: [(50,), (100,), (200,)],

activation: ["identity", "logistic", "tanh", "relu"],
alpha: [0.001, 0.0001, 0.00001],

learning rate: ["constant", "invscaling”, "adaptive"],
learning rate_init: [0.01, 0.001, 0.0001]
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explicitly included the perimeter of the building footprint, the
area-to-perimeter ratio, the number of touching buildings and the length
of shared walls with neighboring buildings as well as additional ranges
around a building to be considered for counting the neighboring
buildings. The features used for training were as follows:

e Area of the building footprint A

e Perimeter of the building footprint P

o Perimeter of the equal area circle P =2 VA 7

e Area-to-perimeter ratio A/P

e Normalized perimeter index NPI = Py /P

e Number of touching buildings

e Length of shared walls with touching buildings

e Number of neighboring buildings in a [30,50, 100, 500] m radius

As Biljecki et al. [20] point out, the advantage of using these features
is their easy availability and non-reliance on additional data sources, as
they can be calculated directly from the dataset itself, while still being
able to reach an accuracy of 1.8 m.

First, hyperparameter tuning using randomized grid search with five-
fold cross-validation was performed to determine the optimal parame-
ters for training. The tuned hyperparameters and potential values are
presented in Table 3. 25 parameter combinations were randomly
selected and evaluated. The objective of the learning task was set to
regression with a squared loss (reg:squarederror). For evaluating the
cross-validated model during hyperparameter optimization using the
negative mean squared error, the scoring parameter was set to neg -
mean_squared_error. The early stopping rounds parameter was set to 20,
and evaluated by the RMSE.

Based on the optimal parameters, an XGBRegressor model was
trained. This model was then evaluated using the test set and perfor-
mance metrics for both the entire test set, as well as for subsets for the
different federal states. The importance of each feature was determined
using the ‘gain’ approach, which measures how much a split in the de-
cision tree using the respective feature contributes to the performance of
the model. The final model was then used to assign heights to all
buildings still lacking height information. The minimum and maximum
valid height of 2 m and 368 m, respectively, were enforced in a post-
processing step by setting all values exceeding these limits to the
boundary values.

3.4. Validation

Building footprints and heights were validated against a building
footprint polygon dataset and a full 3-D building dataset for Germany,
respectively, which is not openly available. Instead, the dataset was
provided by the Federal Agency for Cartography and Geodesy (BKG)
[44] and made available only internally for research purposes. The
building footprint polygon dataset dates from April 2020, whereas the
3-D building dataset is the first all-German version and dates from 2020
(month not specified). According to the NUTS classification, Germany
can be divided into multiple statistical regions at different levels. For
this study, the relevant levels range from the national level 0 down to the
401 districts of level 3. Validations were carried out at all three levels,
from the national (NUTS-0) to the district (NUTS-3) levels.

In a first step, the completeness of the generated dataset regarding
the building footprints was evaluated. As a direct building-by-building
comparison between object IDs was not possible due to the different
data sources, alternative measures were required. First, the number of
buildings from the validation dataset were compared to that of the
generated dataset on a per-region basis. Second, the total footprint areas
per region were compared.

In a second step, the building heights were validated against the
height information provided in the validation 3-D building dataset. As
this dataset was in the citygml format and so it was not possible to easily
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Fig. 2. Splitting of data for the machine learning process.

Table 3
Possible hyperparameter values used in the randomized grid search for hyper-
parameter optimization.

Parameter Values Description [43]

n_estimators 500, 1000 Number of trees

min_child_weight 1, 10, 50, Minimum sample size in the node

100

gamma 0,1,5 Loss reduction required for further splitting of
the node

subsample 0.5, 1 Ratio of training data sub-sampled for each
boosting iteration

max_depth 5,10, 15 Maximum depth of tree

eta 0.05,0.10,3  Learning rate

read height data for all buildings, the methodology used to extract
building footprints and heights follows that described in Section 3.1 for
the open governmental 3-D data. First, the generated height dataset was
validated by comparing the distribution of heights in the generated and
validation datasets. Then, the heights of individual buildings in the
generated building dataset were compared to the height of the building
with the most similar footprint area in a 5 m radius in the validation
dataset based on the buildings’ centroids. The mean absolute error
(MAE) was calculated at various aggregation levels according to Equa-
tion 2, with hy being the height of the building in the generated dataset,
h, the height of the nearest neighboring building in the validation
dataset, and n the number of buildings.
MAE = Z?:1|hg _h"| (2)
n

Similarly, the mean relative error (MRE) was calculated according to
Equation 3:
et

n

MRE = 3

Then, the distribution of individual building errors depending on the
height and footprint area of the buildings in the validation dataset were
analyzed for selected NUTS-1 regions. Furthermore, the distribution of
average errors at the NUTS-3 level depending on the degree of urbani-
zation according to the Global Human Settlement Layer’s degree of ur-
banization classification level 2 [45] was assessed. This classification
differentiates between seven urbanization levels, from mostly unin-
habited area to cities. Finally, the sum over all building volumes in each
NUTS-1, NUTS-3 and LAU region in the generated dataset was compared
to that in the validation dataset. A building’s volume was approximated
by multiplying its footprint area with its height.

4. Results

The machine learning results, including selected hyperparameters,
performance metrics and feature importance of the trained model, are
presented in Section 4.1. Furthermore, the share each of the data sources
contributes to the completeness of the final height dataset is given. The
results show that the accuracy of the machine learning model for all of
Germany is 1.78 m and varies between the federal states. The share of
buildings for which the model was used to predict the highest in

Saarland with 92 %. In Section 4.2, the validation results of the gener-
ated footprint and height dataset are shown. They show that the number
of buildings and the total footprint area have an accuracy of -9.69 % and
-5.16 % over all of Germany, respectively. The height accuracy is 0.59 m
over all of Germany. All accuracies vary depending on the federal state.

4.1. Data extraction and imputation

The building footprint dataset contains a total of 50,815,696 build-
ings, combining open governmental 3-D data for the German federal
states where available and OpenStreetMap building data for the others.
The share of buildings that can be assigned a height directly from the
raw data range between 0.04 % and 100 % for the different federal
states, and 81.4 % for all of Germany. Adding the Urban Atlas Building
Height data [12] increased the share of buildings with a height by be-
tween 0 and 86 percent points (see Fig. 5).

In total, 84% of German buildings can be assigned a height attribute.
These buildings can then be used for training and evaluating the ma-
chine learning model. The available building data are unevenly
distributed across the federal states, with shares between 8 % and 100 %
of buildings in each federal state that can be used for machine learning
(see Fig. 5).

Experiments on a subset containing 10 % of the total training dataset
yielded the results presented in Table 4. The errors are lowest across all
metrics for the XGBoostRegressor, followed closely by the Random-
ForestRegressor. The MLPRegressor performs similarly, with an MAE that
is 0.07 m above that of the XGBoostRegressor. The KNeighborsRegressor,
LinearRegression and LinearSVR perform worse with an MAE almost
twice as high for the worst performing LinearSVR than for the XGBoos-
tRegressor. Fit times are lowest for LinearRegression and the KNeighbors-
Regressor. Training the XGBoostRegressor is slower than the
KNeighborsRegressor by a factor of 8.8, but it is faster than the MLPRe-
gressor by a factor of 2.5 and faster than the RandomForestRegressor by a
factor of 4. This shows that the XGBRegressor does not only have the
highest accuracy, but it also beats models with a similar performance in
terms of fit times. Therefore, this model was deemed the best choice for
training on the full dataset.

The hyperparameter optimization using the XGBoostRegressor on the
full training dataset yielded the parameters presented in Table 5.

Validating the model trained with the hyperparameters on the test
dataset resulted in a mean absolute error (MAE) of 1.78 m, an RMSE of
2.8 m, a mean absolute percentage error (MAPE) of 33.29 %, and a mean
squared error (MSE) of 7.38 m?2. However, the validation results on test
data varied significantly between the federal states (see Fig. 3). Values
above an MAE of 2.5 m, i.e., a common ceiling height of a floor, were
noted for Berlin, Bremen, Hamburg, Baden-Wiirttemberg, Schleswig-
Holstein, Mecklenburg-Western Pomerania, Brandenburg and Saarland.

The feature importance of the trained model based on the ‘gain’
approach is depicted in Fig. 4. According to this metric, the area-to-
perimeter ratio is of particularly high importance, followed by the
normalized perimeter index. When considering the number of neigh-
boring buildings as an indication for the neighborhood characteristics, a
range of 50 m appears to have the highest predictive power.

The share of each source contributing data for assigning the height
attribute in all German federal states is shown in Fig. 5. In most federal
states where open governmental 3-D building data is available, the share
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Results of the machine learning experiments for a subset of the total training dataset. (MAE=mean absolute error, MAPE=mean absolute percentage error, RMSE=root

mean squared error, MSE=mean squared error).

Model Hyperparameters MAE [m] | MAPE [%] | RMSE [m] | MSE [m?] | Fit time [s]
n_estimators: 100,
max_depth: 15,
Ezn?:srzgfrest- min_samples_split: 3, 1010.07
9 min_samples_leaf: 5,
max_features: 0.8
n_estimators: 1000,
max_depth: 10,
XGBoostRegressor eta: 0.05, .
subsample: 1,
min_child_weight: 10,
gamma: 5
. C:1,
LinearSVR epsilon: 0.5
LinearRegression
. n_neighbors: 8,
KNeighbors- .
Regressor I;'adlf_sze. 40,
hidden_layer_sizes: (100,),
activation: “relu”,
MLPRegressor alpha: 0.00001,
learning_rate: "adaptive",
learning_rate_init: 0.0001
4.2. Validation
Table 5

Best parameter values according to the hyper-
parameter optimization. For a description of pa-
rameters, see Table 3.

Parameter Values
n_estimators 1000
min_child_weight 100
gamma 1
subsample 1
max_depth 15
eta 0.1

of height data taken from this source equals 100 %. Berlin constitutes an
exception; the raw data does not contain a “measuredHeight” tag in some
cases. Where OpenStreetMap provides the data basis, the source distri-
bution is more diverse. The share of buildings that can be assigned a
height attribute from OpenStreetMap is relatively low. It generally re-
mains well below 1 % and only reaches a maximum of 2.4 % in Meck-
lenburg-Western Pomerania. In some federal states, Urban Atlas
building heights contribute significantly to the number of buildings
assigned a given height. This is especially the case for Bremen which
features a percentage of about 86 %. In other federal states where Urban
Atlas building heights significantly contribute, the share lies in the range
of 7-17 %. Buildings that could not be assigned a height using the raw
data sources were assigned one via the machine learning model.
Therefore, the federal states for which OpenStreetMap data is used as a
basis except for Bremen rely most heavily on machine learning, i.e.,
Baden-Wiirttemberg, Mecklenburg-Western Pomerania, Rhineland-
Palatinate, Saarland, and Schleswig-Holstein. With a share of 92 % of
building heights estimated with the machine learning model, Saarland is
at the top.

Comparing the number of buildings in the generated and validation
dataset yields a deviation of -9.69 % for all of Germany and varies be-
tween 0.27 % for Brandenburg (BB) and -46.9 % for Schleswig-Holstein
(SH), as depicted in Fig. 6. Deviations of 25 % or more can be observed
in most federal states with OpenStreetMap as a data basis, whereas the
deviation remains below 10 % for all federal states in which open
governmental 3-D building data could be used, with the exception of
Berlin, with a relative error of 18.6 %.

As is shown in Fig. 7, the relative error of the footprint area for
Germany is -5.16 %, and therefore lower than the relative error for the
number of buildings. At the NUTS-1 level, the error lies within the much
smaller range of between -0.52 % for Mecklenburg-Western Pomerania
and -10.2 % for Hamburg. No dependency on the source of the raw data
was apparent, i.e., whether official 3-D data or OpenStreetMap data was
used.

The results of the building heights validation are depicted in Fig. 8,
Fig. 9, and Fig. 10. Fig. 8 shows the distribution of building heights in
the generated dataset compared to the building heights in the validation
dataset for all of Germany. Overall, the distributions display very high
agreement. However, in the validation dataset, some buildings taller
than the maximum expected height of 368 m are present. These heights
were deemed invalid in the methodology described in this study and
therefore do not appear in the generated dataset. As is shown in Fig. 9,
the MAE for all of Germany is 0.59 m, which is the same as the median
absolute error. For the various federal states, it ranges between 0.11 m
for Hesse and 3.27 m (median absolute error of 2.96 m) for Bremen.
Errors are not homogeneous across regions, and even within the NUTS-1
states, there is significant variance. Amongst the NUTS-3 regions,
Stuttgart and Heidelberg, both located in Baden-Wiirttemberg, exhibi-
ted the lowest accuracies, with an MAE of above 5 m. Five other NUTS-3
regions featured an MAE above 4 m; 13 others had an MAE above 3 m.
On the other side, 289 NUTS-3 regions had accuracies in the sub-meter
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Fig. 3. (a) Mean absolute error (MAE), (b) mean absolute percentage error (MAPE), (c) root mean squared error (RMSE), and (d) mean squared error (MSE) in
building heights of the XGBoost machine learning model for the German federal states (BW=Baden-Wiirttemberg, BY=Bavaria, BE=Berlin, BB=Brandenburg,
HB=Bremen, HH=Hamburg, HE=Hesse, MV=Mecklenburg-Western Pomerania, NI=Lower Saxony, NW=North Rhine-Westphalia, RP=Rhineland-Palatinate,
SL=Saarland, SN=Saxony, ST=Saxony—Anhalt, SH=Schleswig-Holstein, TH=Thuringia). Orange line shows mean over all federal states.
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Fig. 4. Feature importance (‘gain’) of the features used for training the XGBoost machine learning model.

range.

The MRE of all four aggregation levels is shown in Fig. 10. For
Germany as a whole, the MRE is 9.12 %. The values vary between fed-
eral states and range between 1.67 % for Hesse and 41.12 % for
Schleswig-Holstein. MREs at NUTS-3 level are below 10 % for 288 re-
gions. Only three regions, the city of Stuttgart, Freiburg, and Ulm,
located in Baden-Wiirttemberg, exhibit an MRE above 50 %.

Fig. 13 shows the distribution of the MAE at the NUTS-3 level
grouped by degree of urbanization. The median is almost the same for all
urbanization levels, apart from the “suburban or peri-urban area”
category, which contains only two regions. 75 % of the NUTS-3 regions
across all urbanization categories have an error below 2 m. From
dispersed rural area to semi-dense town, the error for all regions remains
below 2.5 m. Higher errors occur only in dense towns and cities, with
errors up to 3.5 m and 5.39 m, respectively.

Fig. 14 shows the relative error of the total building volume aggre-
gated by NUTS-3, NUTS-1 and LAU level. At the NUTS-1 level, the

relative error in 12 of the 16 federal states is below 10 %. The relative
error is above 10 % in Bremen (-28.49 %), Mecklenburg-Western
Pomerania (18.45 %), Berlin (13.43 %) and Bavaria (10.39 %). At the
NUTS-3 and LAU level, 71.32 % and 63.01 % of the regions, respec-
tively, have an accuracy above 90 %. In 3.74 % of the NUTS-3 regions
the accuracy is below 75 % and in 2.09 % of LAU regions, the accuracy is
below 50 %.

5. Discussion

This study shows the feasibility of the presented methodology and
quantifies the accuracy of the results on different aggregation levels.
Using this approach, it is possible to generate a complete building
dataset of acceptable quality, combining different data sources. The
following section discusses the benefits and limitations of the chosen
approach, compares it with existing studies and presents ideas for
further improvement and suggestions for future investigations.
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Fig. 5. Share of buildings in each German federal state, derived from the various source datasets and approaches for assigning a height value (BW=Ba-
den-Wiirttemberg, BY=Bavaria, BE=Berlin, BB=Brandenburg, HB=Bremen, HH=Hamburg, HE=Hesse, MV= Mecklenburg-Western Pomerania, NI=Lower Saxony,
NW=North Rhine-Westphalia, RP=Rhineland-Palatinate, SL=Saarland, SN=Saxony, ST=Saxony-Anhalt, SH=Schleswig-Holstein, TH=Thuringia).
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Fig. 6. Relative error of the number of buildings in the generated dataset compared to the validation data at the NUTS-1 and NUTS-3 levels. For negative values, the
number of buildings was lower in the generated dataset than in the validation one.
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Fig. 7. Relative error of the footprint area of buildings in the generated dataset compared to the validation data at the NUTS-1 and NUTS-3 levels. For negative
values, the footprint area of buildings was lower in the generated dataset than in the validation dataset.

The validation of building footprints shows that while there is a good
match for some federal states, in others there are large discrepancies in
the number of buildings in the generated and validation datasets for
federal states relying on OpenStreetMap data. A visual examination of
the validation data revealed that this is caused by the validation dataset
being much more detailed and including smaller buildings and parts

thereof. As the total number of polygons is counted and there is no trivial
way of combining building parts with buildings, this leads to a high
number of buildings in the validation data. For this reason, validation
based on footprint area is deemed more meaningful. Considering the
footprint area, a very high degree of similarity between the generated
data and validation data can be observed for all federal states,
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independent of the source of the building data. This permits the
conclusion that using the approach of combining official 3-D building
data with volunteered geographical information from OpenStreetMap
data is a viable approach for generating a complete building footprint
dataset for Germany.

The average error when comparing the generated dataset to the
validation one for Germany is 0.59 m. This is well below common ceiling
heights and should therefore not have a significant effect when using
building data on an aggregated level. However, the observed errors
strongly depend on the region and source of the height data. Although
errors are negligible in regions based on open governmental 3-D data,
errors are higher, as expected, in the other regions. However, even
within the NUTS-1 regions, errors are not homogeneous, and some
NUTS-3 regions were found to have significantly higher accuracies than
others. Amongst the NUTS-1 regions, Bremen proves to be most prob-
lematic due to a high reliance on the machine learning model combined
with a poorer performance of the model for this state. At the NUTS-3
level, the model shows low accuracies for several cities in
Baden-Wiirttemberg. Analyzing accuracies depending on the type of
region showed that higher errors occur in cities and dense towns. This is
most likely due to the more complex and heterogeneous structure of
cities compared to villages and dispersed rural areas. This finding is in
line with the higher error for, e.g. Paris, in the study by Bernard et al.

35
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Fig. 9. Mean absolute error (MAE) of building heights in the generated dataset compared to the validation data at the NUTS-1 and NUTS-3 levels.
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Fig. 10. Mean relative error (MRE) of building heights in the generated dataset compared to the validation data at the NUTS-1 and NUTS-3 levels. Figs. 11 and 12
show the distribution of absolute building height errors in the generated data over real height and footprint area of the buildings for those federal states that have the
lowest height accuracies (MRE >30 %), as described above. The error does not exhibit any clear dependence on the height of buildings. A tendency for errors to be
higher for buildings with heights above 15 m can be observed across most regions though; it is most pronounced in Baden-Wiirttemberg, Rhineland-Palatinate, and
Saarland. However, there are only very few buildings that fall into that height category. The median error for buildings in the range between 3 and 10 m, which is the
most frequent height range for all regions depicted in Fig. 11, is below 2 m for all regions apart from Bremen. The majority of errors is even lower, whereas there is a
tail of higher errors. As Fig. 12 shows, building height errors appear to be mostly independent of the footprint area of buildings, with only a slight increase of errors

for buildings with footprints of more than 200 m?
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Fig. 11. Distribution of the absolute building height errors (upper 5 % removed for display reasons) and number of buildings for height ranges in selected NUTS-1

regions in Germany
SH=Schleswig-Holstein).

(BW=Baden-Wiirttemberg, ~HB=Bremen,

[21]. Using the generated dataset for these regions could therefore lead
to errors in further analyses. Looking at the relative error instead of
absolute errors reveals a similar picture. The main difference is that less
densely populated states with overall lower building heights show a
higher relative error, indicating that the absolute deviance between
heights in the generated and validation dataset is similar, independent
of the height of the building.

It must be pointed out that the errors in the building height valida-
tion are not independent of the building footprint validation. As dis-
cussed above, it was found that the similarity between generated and
validation dataset is considerably higher when comparing footprint
areas than when comparing building numbers, indicating that the 3-D
building data is more detailed than the OpenStreetMap data. This
could lead to the effect that the height of a building in the generated
dataset is compared to that of a building in the validation dataset, to
which it is not actually comparable, even though the buildings are in
close proximity. For example, the height of a large building complex
might be compared to that of a garage, despite the limitation of a 5 m
radius and selecting the building with the most similar footprint area for
comparison. As an additional validation that eliminates this error
source, we compared the total building volume per region at the NUTS-
1, NUTS-3 and LAU level and found a high agreement between the
generated and the validation dataset for most regions. Due to the aver-
aging effect, errors are lowest at the highest aggregation level, i.e., at the
federal state level and only a small percentage of NUTS-3 exhibits ac-
curacies below 75 %, making the dataset particularly suitable for large-
scale analyses at the aggregated level. However, the higher errors in
some of the NUTS-3 and, particularly, LAU regions need to be consid-
ered and corrected for when using the data.

MV=Mecklenburg-Western

11

Pomerania, RP=Rhineland-Palatinate, = SL=Saarland,

Whether the presence of additional building height data from the
Urban Atlas building heights increases the overall accuracy of the
generated data compared to using machine learning models only is not
evident and requires further investigation in subsequent studies. The
fact that the Urban Atlas dates to 2012 could significantly increase
average errors by including buildings that no longer exist in the gener-
ated and validation dataset and vice versa. Other methods of assigning
heights to buildings from the Urban Atlas raster data could be tested in
the future, e.g., only considering the pixels overlapping the centroid of
the building polygon or taking the maximum instead of the average
value of the touching pixels.

Additionally, it must be kept in mind that validating the generated
data against the 3-D building dataset assumes that this dataset repre-
sents reality. However, as mentioned previously, even the validation
dataset contains a few unrealistic building heights. It is expected that for
the regions where open governmental 3-D data is available, the accuracy
compared to this dataset is very high, as it is based on the same meth-
odology and data basis. Minor discrepancies for those states in the
validation can be attributed to the source data for generating the dataset
itself being, in most cases, more recent than the validation data. In the
case of Berlin this is reversed, and the validation data is more recent by
seven years, explaining in part the lower accuracy in the city state.
Furthermore, the pre-processing steps taken to extract building foot-
prints and height information from the raw citygml files was conducted
for both generating and validating the dataset. The validation dataset
was therefore modified to be able to carry out the validation, which
presents a potential source of uncertainty.

The distribution of errors shows that for the most frequently occur-
ring height range of 3-10 m, the majority of errors as well as the mean
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Fig. 12. Distribution of the absolute building height errors (upper 5 % removed for display reasons) and number of buildings for footprint area ranges in selected

NUTS-1 regions in Germany (BW=Baden-Wiirttemberg,
SH=Schleswig-Holstein).
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Fig. 13. Distribution of mean absolute error (MAE) in NUTS-3 regions grouped by degree of urbanization.

error, is in a range below the average ceiling heights. However, some
errors are significantly higher across all height and footprint ranges.
These buildings will require further investigation in future research.
Including datasets containing height data specifically for high-rise
buildings would be an interesting addition. As the outliers with high
errors amongst a few buildings are likely to have a significant impact on
the average error in federal states, reducing the error of these buildings
should also decrease the overall error.
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Furthermore, the accuracy of the machine learning model
(MAE=1.78 m), which slightly outperforms the model based solely on
geometric properties by Biljecki et al. [20] (MAE=1.8 m), but as ex-
pected performs worse than their more complex models with more
features (MAE=0.8 m), could potentially be increased by including more
features. Similarly, Milojevic-Dupont et al. [22] use more features and,
despite including only small samples from the respective areas, achieve
slightly better MAEs when applying their model to their study area
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Fig. 14. Relative error of building volume in the generated dataset compared to the validation data at the NUTS-1, NUTS-3 and LAU level.

(MAE=1.47 m) and to Berlin (MAE=2.06 m) and Brandenburg
(MAE=1.47 m). As they do not validate their model for other German
regions, a more detailed comparison was not possible. The model by
Bernard et al. [21] performs slightly better (RMSE=2.02-2.2 m) than
our model (RMSE=2.8 m), which is not surprising considering that their
study is limited to a small number of French communes. Compared to
the nation-wide random forest model for the United States by Che et al.
[15] (RMSE=3.35 m) and the deep learning model for Chinese cities by
Cao et al. [16] (RMSE=6.3 m), our model shows a higher accuracy.
Adding a feature that contains information about the location, e.g., a
NUTS code or coordinates, of the building would be especially inter-
esting, as it could allow the model to take regional differences into ac-
count and might help balance the model’s performance in the various
federal states. Furthermore, features that provide information on the
environmental and socio-economic context, such as the proximity to
public infrastructure or the heritage status of a building could improve
the model’s performance. However, the model should not be made too
complex in order to keep computation times at a manageable level and
avoid overly strong dependencies on the availability of regional data-
sets, which would limit transferability to other regions.

Our experiments on a subset of the full training data confirmed the
findings in literature that XGBoostRegressor is the best suitable model for
the regression task at hand. Not only did it show the highest perfor-
mance in terms of accuracy metrics, but it also had lower fit times than
other similarly performing models. In order to further increase the ac-
curacy of the XGBRegressor model, a more detailed hyperparameter
optimization could be carried out in future studies.

The advantage of this progressive approach of integrating different
data sources lies in the ability to incorporate the best data available
while guaranteeing a complete dataset without missing data. It provides
a minimal workflow that is transferable to other regions while allowing
for extension and adaptation to local data availability. For Germany, a
large height dataset is available, which was valuable for training and,
especially, validating the selected approach. This is not necessarily the
case in other regions. Within this study, we attempted to train the best
possible model for Germany using as much data as possible. This does
not allow us to make statements on the requirements for data avail-
ability and potentially limits the generalizability and transferability of
the machine learning to regions with severe data scarcity. However, our
proposed approach makes it possible, in the most basic case, to transfer
the approach to other regions, where OpenStreetMap can serve as a
minimal data basis and the machine learning model can be used to
impute missing heights. As pointed out by Milojevic-Dupont et al. [22],
adding only a small sample from the target region can already signifi-
cantly improve model performance. However, while the completeness of
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building footprints in OpenStreetMap is 71 % in Europe, according to
Herfort et al. [46], only 2.8 % of all buildings in OpenStreetMap
worldwide contain a height key [47]. Moreover, whereas 13.41 % of
buildings in the United States have a height key [48], the coverage in
European countries is often much lower (Germany: 0.42 % [49], France:
0.28 % [50], Hungary: 0.23 % [51]). Therefore, relying solely on
OpenStreetMap data may not be sufficient. Ideally, 3D building datasets
or other height data sources are available for at least some areas within
the region of interest. Considering the increasing coverage of building
heights in the Microsoft GlobalMLBuildingFootprint dataset [19], it is
likely that many regions can use this dataset as one height data input in
the future. However, formats and semantics may vary between sources,
requiring tailored data processing steps. As Milojevic-Dupont et al. [22]
show, applying the machine learning model to other regions, ideally
with additional local data, leads to acceptable results. However, while
they consider a scenario with 2 % of additional height data available,
even this exceeds what is available in OpenStreetMap for many regions.
Therefore, whereas model improvement is an important aspect, the
acquisition of high-quality input data on an individual building level is
crucial to fully leverage the presented approach and enhance the data-
set’s accuracy. Whereas the focus of this study lies in using openly
available datasets and features that can easily be derived from building
geometries to increase transferability, it might be worth analyzing the
effect of including additional datasets. It would, for example, be inter-
esting to evaluate the availability of LIDAR data for buildings that have
been assigned a height using machine learning in our approach and to
test whether its inclusion increases the accuracies of the height assign-
ment. In future studies, though making the approach more
region-specific, including other datasets could increase accuracy in re-
gions with higher errors both directly and through increases in the ac-
curacy of the machine learning model by providing more
spatially-balanced training data.

6. Conclusions and outlook

The presented methodology, including footprint and height data
extraction from basic 3-D and OpenStreetMap data, enriching it with
additional height datasets and imputing missing height data using ma-
chine learning, is suitable for creating a unified and complete dataset of
building footprints and heights for all of Germany. Apart from a few
regions that require further attention in future studies due to lower ac-
curacies of building heights, the accuracy of both building footprints and
height data is high. We find a high correspondence between the gener-
ated and reference datasets for the building number and per-building
height validation in those states where open governmental data is
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available, the difference is larger in areas where OpenStreetMap is the
basis for building data. For the footprint area and building volume
validation, the accuracy is less dependent on the federal state’s main
data source. The nation-wide building number and footprint area ac-
curacy is 90.31 % and 94.84 %, respectively. The XGBoost machine
learning model for height prediction has an overall accuracy of 1.78 m,
the nation-wide height accuracy based on a per-building validation is
0.59 m and varies between 0.11 m and 3.27 m depending on the federal
state. It remains under the common ceiling height of 2.5 m for all states
apart from Bremen. The total building volume accuracy at the federal
state level lies between 71.5 % and 99.91 % and is above 90 % for 12 of
the 16 federal states. At the NUTS-3 and LAU level, 71.32 % and 63.01 %
of the regions have an accuracy above 90 %, respectively. Based on the
results of the validation it can be stated that the dataset is suitable for
individual-building and aggregated analyses.

In future studies, more features could be included in the machine
learning model. Additionally, if possible, more datasets could be incor-
porated, especially for regions with higher errors. Furthermore, the
transferability of our model to regions outside of Germany, especially
those with marked data scarcity, is an interesting question to evaluate.

To summarize, the methodology described in this study is useful for
creating a nation-wide, high-quality building height dataset. The dataset
itself is of high value to the scientific community and can easily be used
for further analyses, e.g., in energy system modeling.
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